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Abstract 
 
The weighted population density for 349 English local government areas, and the raw population density 
for a further 58 areas from Northern Ireland and Scotland, were used to demonstrate the role of high 
population density in the volatility associated with year-to-year total deaths and of excess winter mortality 
(EWM). Volatility in EWM was measured as the standard deviation over a 20-year period while for total 
deaths looked at the absolute value of the year-to-year difference expressed as standard deviation 
equivalents. The volatility in EWM for the most densely populated areas was almost double that of least 
populated areas. This reached a plateau when weighted population density exceeded 8,000 persons per 
square Km. For total deaths, the year-to-year average difference was around 35% higher when population 
density exceeded 7,000 persons per square Km. Death culminates a six-month period of increasing 
admission to acute hospital which can account for 55% of a person’s lifetime use of a hospital bed. Hence 
the volatility in death is a good measure of volatile costs and capacity pressures. Volatility in costs will 
follow the year-to-year pattern while hospital capacity pressures will tend to follow the EWM pattern, 
although with time lags. Population density acts to facilitate the spread of infectious agents, which 
increasingly arrive via international air travel. Population density is also associated with air pollution which 
acts to increase systemic inflammation in the population, thereby rendering them more susceptible to 
infection and adverse outcomes. Dysregulation of the inflammatory response to infection in the elderly 
implies that infection(s) with otherwise seemingly ‘trivial’ pathogens can then lead to surges in admissions 
and deaths which are then reported as a variety of (secondary) diagnoses. Unexplained patterns in 
average length of stay and the gender ratio for admissions for common conditions, which have previously 
been ignored, support this explanation. Similar unusual trends in the volatility associated with sickness 
absence among health care workers are also observed. 
 

Key Points 
• Population density is a proxy for air pollution and person-to-person contact, both of which 

enhance the transmission of infectious diseases 
• Highest population density was associated with the highest volatility in year-to-year deaths and 

of Excess Winter Mortality (EWM) 
• Transmissible infections work via the inflammatory immune response to promote acute illness 

and death in a variety of respiratory and pre-existing conditions, i.e., they often act as the trigger 
for final demise 

• Human pathogens are now known to interact in complex ways 
• Multiple infections are far more common than realized 
• Unexplained trends and spikes in hospital average length of stay and the ratio of male to female 

admissions seemingly arise from the network of such infectious outbreaks 
• Unusual volatility in sickness absence rates among health care workers is also related to 

population density 
• The higher volatility associated with population density implies that costs associated with the 

population of large cities will be more volatile than for least populated areas, i.e., there is higher 
financial risk and greater opportunity for insurance revenue to be out of sync with insurance costs 

• The foundations for the health insurance underwriting cycle appear to lie in the time patterns 
arising from this complex and ever-changing infectious landscape 

• For the hospitals situated in large cities, this will manifest in more volatility in winter capacity 
pressures. However, this will be partly mitigated by larger hospital size necessitated in the more 
densely populated areas 
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Introduction 

Earlier studies have shown that the year-to-year volatility in deaths, admissions and healthcare costs is 
both size and location specific, i.e., after adjusting for size some locations have intrinsically higher financial 
risk than others (Jones 2010a,b, 2012a-h, 2013a-c). This was assumed to be due to location-specific 
environmental factors including infectious outbreaks. 

This study will first outline the fundamental biological/medical basis as to why some locations should show 
higher cost/capacity volatility.  It will then give the corroborating evidence of a role for small-area 
population density, explore wider health care parameters showing unexplained volatility, and then 
conclude with the areas for further research. 

Overview of infectious outbreaks 

Modern society exists in a cocktail of infectious agents. In 2005, over 1,400 species of human pathogens 
had been identified (Woolhouse and Gowtage-Sequeria 2005). Of the human viruses alone, in 2012 it was 
estimated that between 89 to 265 new species remained to be identified (Woolhouse et al 2012). A study 
published in 2012 involving over 26,000 clinical samples specifically looking at bacteria identified 95 novel 
taxa, 111 novel genera, and 673 novel species (Schlaberg et al 2012). The figure of >1,400 species had 
suddenly jumped to >2,000 species in one leap.  

A disturbing number of new species of bacteria causing human infection are emerging from those 
previously considered to be non-pathogenic (Sekowska and Gospodarek-Komkowska 2019). A search of 
the term “new species in clinical samples” in Google Scholar restricted to papers published since 2016 
yields hundreds of results.  

In England, only 60 of these >1,400 species are ‘notifiable’ to Public Health Agencies (Public Health 
England 2020). High volume air travel and airports distribute these agents with disturbing ease (Kumala 
2017, Pequeno et al 2020). Indeed, 1,400 species is the tip of the iceberg, since each species will have 
multiple strains and sub-types. Testing for atypical pathogens in something as common as pneumonia 
varies considerably between countries and hospitals (Gramegna et al 2018). 

Indeed, outbreaks of different strains of the same species, i.e. the two coronaviruses SARS and COVID-19 
can show markedly different spatiotemporal (space-time) patterns of infectious spread (Zhang et al 2020). 

Accurate diagnosis of cause and effect is not simple. Up to 200 different species of virus can cause 
symptoms of the common cold (National Institutes for Health 2009). Rhinovirus, the most common cause 
of the cold, has 99 distinct types. This vast array of species/types/variants gives ample scope for health 
professionals to dismiss the potential implications of exactly why someone is feeling ‘unwell’. The don’t 
worry, its only a virus syndrome. Indeed, while most pathogens are of little consequence to younger 
adults, the same cannot be said for the elderly. 

No pathogen operates in splendid isolation and an increasing number of interactions between pathogens 
and between the intestinal microbiota are being identified (Brundage 2006, Xie et al 2020, Zuo et al 2020). 
In addition, humans accumulate a variety of persistent pathogens throughout their lifetime (Noppert et 
al 2019), called the ‘pathogen burden’, which has been implicated in the progress and severity of several 
diseases (Mundkur et al 2012, Sharma et al 2016). Active co-infection with multiple pathogens (different 
species and different strains of the same species) is far more common than appreciated (Seinost et al 
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1999, Rippee-Brooks et al 2020). This cocktail of infections has been linked to human mortality (O’Sullivan 
et al 2020). 

Vaccination can diminish the impact of health services and a national rotavirus vaccination program in 
Finland led to large reduction in bed occupancy for acute gastroenteritis (Hartwig et al 2014). 

For example, Americans make 2.3 billion recreational journeys within the U.S. each year, they make a 
further 93 million journeys to other countries, while 80 million international visitors arrive each year 
(Condor Ferries 2020). The opportunities to import and transmit pathogens are vast. The specifics of how 
population density and other environmental factors interact will now be briefly covered. 

Population density and air pollution 

The spread of measles epidemics is profoundly influenced by population density (Tarwater and Martin 
2001). As population density increases so also do the contact rates between individuals, however, this 
saturates at high density (Hu et al 2013). These authors noted that “in crowds with unusually large 
densities, e.g., transportation terminals, stadiums, or mass gatherings, the lack of organized social contact 
structure deviates the physical contacts towards a special case of the spatial contact model” (Hu et al 
2013). Hence persons living in large cities will experience a mix of two types of exposure.  

Population density has been linked with the spread of COVID-19 in both the USA and the UK (Jones 2020), 
in Europe (Johnson 2020), Brazil (Pequeno et al 2020), Japan (Hirata et al 2020), and Algeria (Kadi and 
Khelfaoui 2020). Note that the best studies used weighted or lived population density rather than raw or 
standard population density (Johnson 2020). The latter can give misleading results. However, population 
density is also associated with air pollution which increases as a power-law function of population density 
(Lamsal et al 2013).  

Air pollution acts to increase the potency of respiratory infections including COVID-19 (Domingo and 
Rovera 2020). A high air pollution index was associated with an 80% increased risk of SARS fatality (Cui et 
al 2003). Airborne particulate matter (PM 2.5 and PM10) has been implicated in the spread of COVID-19 
and its morbidity and mortality (Comunian et al 2020, Setti et al 2020, Wang et al 2020, Wu et al 2020, 
Tung et al 2021). Ambient NO2 increases systemic inflammation in COPD patients (Dadvand et al 2014), 
pollutants (PM2.5 and black carbon) also increase inflammation in Type 2 diabetes (O’Neill et al 2007). 
Another study demonstrated that different pollutants affected different inflammatory markers (Bind 
2012). Long-term exposure to PM2.5 is also associated with risk of Alzheimer’s and other dementias 
(Wang et al 2020), and combinations of air pollutants increase cognitive decline in adults (Chen et al 2021). 

Seasonality in deaths and the effect of temperature 

Deaths generally peak during the winter months, and in England and Wales, reach a minimum in August, 
and a maximum in January (around 60% higher than the daily minimum) (Jones 2013c). The winter peak 
is due to a mixture of cold, mainly due to physiological changes upon exposure of the respiratory tract to 
cold air (Mourtzoukou and Falagas 2007), seasonal gene expression (Shi et al 2009, Dopico et al 2015, 
Goldinger et al 2015), and lower levels of Vitamin D leading to impaired innate and adaptive immunity 
(Baggerly et al 2015, Aranow 2011), especially in the elderly (Meehan 2014, Kuwabara et al 2020), which 
be sensitive to cloud-free hours of sunlight during the summer (Garland et al 2016). In combination, these 
promote susceptibility to, and circulation of, winter infectious (typically respiratory) agents (Fleming et al 
2005, Fleming and Elliot 2008).   
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Temperature is a well-recognized factor in the mortality rates for different diseases (Chen et al 2018, 
Bareca et al 2012). The effect of cold and heat on mortality has been characterized by a comprehensive 
Dutch study (latitude of Netherlands is 52.34 which is roughly the midlands of England) which showed 
that mortality reached a minimum around 17 OC but requires a +10 or -22 OC deviation from 17 OC to 
elevate daily mortality by 14% (Ekamper et al 2009). Hence it requires an extended period of unusual cold 
(relative to average at that time of the year) to make a large impact on deaths. The mortality risk of 
extreme cold lasts longer than that from extreme heat (Chen et al 2018), and the shape of the 
temperature-mortality profile varies considerably between countries, as does the temperature for 
minimum mortality (Gasparinni et al 2015). 

In addition, one study has demonstrated that rates of consultation for inflammation-related diseases also 
varies with temperature. Low temperatures were associated with higher consultations for all types of 
inflammatory conditions, while high temperatures were only associated with gastroenteritis (Wang et al 
2020). Cold air acts to increase inflammation in the lung (Larsson et al 1998). Interestingly, faster spread 
of COVID-19 in Brazil was associated with lower temperature (Pequeno et al 2020). The association of low 
temperature with inflammation is important since inflammation is identified as a risk for infection, 
followed by infection-induced additional inflammation.  

Role of infections and inflammation 

Infection is usually followed by a ‘protective’ inflammatory response which can become dysregulated, 
especially in the elderly, with lethal consequences (Levi et al 2003, Bauer and Wetzka 2020, 
Channappanavar and Perlman 2020). With over 1,400 species of human pathogens, there is ample scope 
for local infectious outbreaks of unknown origin (Woolhouse and Gowtage-Sequeria 2005). The vast 
majority of these are not ‘notifiable’ pathogens and so will remain largely unreported and un-investigated.  

Regarding influenza-like illness (ILI) one study identified that in addition to influenza(s) there are at least 
eight common viruses causing ILI (Taylor et al 2017). In another study, 44% of ILI respiratory swabs yielded 
multiple viruses (Dierig et al 2014). ILI can also be caused by bacteria, fungi, and parasites. 

As mentioned above, the ensuing inflammatory response after initial infection becomes less regulated in 
the elderly (Boyd and Orihuela 2011). In the lung, this can lead to secondary bacterial pneumonia or direct 
damage to the lung by the inflammatory response (Jabr 2017). Around 30% of Influenza deaths arise from 
the effects of inflammation on pre-existing conditions outside of the lungs (Jabr 2017).  

Few would realize that obesity is itself a serious inflammatory ‘disease’ (Karczewski et al 2018), which 
predisposes the obese to a higher risk of infection and poor outcomes from infection (Fernandes and 
Manuel 2017). Somewhat perversely some infections can also promote obesity (Akheruzzaman et al 
2019). Elevated levels of C-reactive protein (CRP), which is a measure of inflammation, are associated with 
international travellers attending the ED due to overseas acquired illness (Herbinger et al 2016), and in 
detecting persons with viral and atypical bacterial infections (Duran et al 2016). However, chronic elevated 
CRP is also associated with disease progression and as an early biomarker of inflammatory disease onset 
(Luan and Yao 2018). Numerous industrial, household, and agricultural chemicals promote chronic 
inflammation (Furman et al 2019). Hence it should come as no surprise that reasonably common 
conditions such as appendicitis in adults follow local trends influenced by air pollution (as an example of 
chronic inflammation) and common infections (Jones 2015). 
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Age immunoscenescence and inflammaging 

Aging is associated with both immunoscenescence and chronic low-grade inflammation called 
inflammaging (Fulop et al 2018, Thomas et al 2020). The immune response to vaccination wanes with age 
especially in those who are infirm (Ciabattiani et al 2018). For these reasons, the elderly are more prone 
to disease and more specifically infectious disease (Ebihara 2011, Batista et al 2020). Prescription of 
multiple drugs in old age (polypharmacy) further erodes the immune response with diminished vaccine 
effectiveness (Agarwal et al 2018). 

The last year of life 

Healthcare demand depends far more on proximity to death than age. A score based on self-reported 
health rose from 3.46 at 15 years prior to death to 4.43 at one year prior to death (Stenholm et al 2016). 
Cognitive ability and wellbeing decline slowly with age but becomes more rapid 3-5 years prior to death 
(Stenholm et al 2016, Cohen-Mansfield et al 2018). Failure to account for nearness to death wrongly 
attributes decline to age per se (Rabbitt et al 2008), hence the sound bite “it’s all due to the aging 
population”. This is called the constant risk fallacy (Nicholl 2007).  

The last year of life sees a transition from independence to requiring increasing help with the normal 
activities of life. For example, one study showed that 20% of persons in the last year of life had 6 
limitations in the activities of daily living (ADLs) while only 6% of persons had 6 ADLs in the year prior to 
the last year of life. Some 63% of persons had no ADLs in the year before the last but 58% had 1 or more 
ADLs in the last year of life (Kalbarczyk-Steclik and Nicinska 2015). This decline is compressed in cancer 
patients (Kalbarczyk-Steclik and Nicinska 2015, Stenholm et al 2016). Admissions to hospital in the last 
year of life can account for 55% of lifetime bed occupancy (Hanlon et al 1998), and this occurs with 
increasing frequency in the last six months of life – irrespective of age (Larsson et al 2008, Thorn et al 
2016, Jones et al 2016). It is of interest to note that a composite score based on common blood 
biochemical tests shows a sudden shift to a higher (worse) score in the months prior to death (Jones et al 
2016). This appears to be linked to the progressive increase in admissions in the last six months of life. 

A functional aging index combined with frailty can predict entry into care and mortality (Finkel et al 2019). 
Elderly patients (aged 65+) with community-acquired pneumonia who were frail had a 2.9-times higher 
risk of death within one year of hospital discharge (Luo et al 2020). 

A U.S. study conducted between 1998 and 2010 showed that the prevalence of pain, depression, periodic 
confusion, dyspnea, incontinence, severe fatigue, and anorexia all increased over time (Singer et al 2015). 
Many of these can be related to inflammation and infection so it could be possible that the susceptibility 
to infectious outbreaks is increasing with time. As it were, those in the last year of life are waiting for any 
agent capable of precipitating final demise. 

Results 

Year-to-year variation in total deaths, U.S. States 

Table 1 shows the top 15 U.S. states with the highest year-to-year volatility in deaths, relative to the state 
with the lowest volatility (Wyoming and Vermont, relative volatility = 1). These are mostly the states with 
highest weighted population density.  
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Table 1: Top 15 U.S. states with highest year-to-year relative volatility in the rolling 12-month total of 
deaths, 2007 to 2019. 

State 
Relative 
volatility 

Florida 5.65 
Texas 5.19 
California 4.41 
North Carolina 4.27 
Ohio 4.05 
Pennsylvania 3.89 
Arizona 3.62 
Georgia 3.58 
Virginia 3.38 
New York 3.24 
Indiana 3.22 
Massachusetts 3.19 
Illinois 3.19 
Maryland 3.10 
New Jersey 3.04 

 

Figure 1 compares the rolling year-on-year volatility in deaths between Florida (highest relative volatility) 
and Vermont (lowest). The chart starts at the difference between the sum of deaths during 2007 
compared to 2008, move forward one month and repeat the calculation.  

Due to their difference in number of deaths, a 1 standard deviation difference due to Poisson- based 
chance equals ± 1.3% in Vermont but just ± 0.2% in Florida (Koehrsen 2019). Hence while the chart shows 
roughly similar percentage changes, the effect of size dramatically increases the relative volatility for 
Florida compared to Vermont. Hence the use of size-adjusted volatility throughout this study. However, 
note the differences in shape and timing, and the peculiar absence of influenza-only features. In a rolling 
12-month chart a ‘spike’ in deaths due to influenza shows up as a rectangular-shaped feature with a base 
which is roughly 12-months wide. This is because the spike in deaths enters the rolling 12-month total, 
stays there for 12-months, and then drops out of the rolling total. The significance of some of these trends 
will be discussed in Part 3 of this series. 

While Public Health agencies seek to promote the simple ‘word bite’ story that major surges in deaths are 
due to influenza, the data in Figure 1 does not support such a simple explanation. Hence while influenza 
is important, it is not exclusively so and cannot explain the more nuanced trends over time, and between 
states. As explained above no pathogen operates in splendid isolation. 

The problem with analysis at state level (above) is the huge size of the USA. For example, England has a 
surface area of 50,350 square miles, of which 21% is urban development. This is roughly the same size as 
Arkansas, Alabama, and North Carolina. On the other hand, Texas is 5-times the size of England (Wikipedia 
2020a,b). From Poisson statistics, we need a spatial area with 500 to 1000 deaths per annum to achieve a 
degree of reliability that the differences are not due to chance (Koehrsen 2019). Local authority areas in 
the UK fit these criteria and have associated widely different weighted population densities. 
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Figure 1: Rolling year-to-year change in total deaths for Vermont and Florida based on a rolling 12-
month sum of monthly data from January 2007 to March 2019. Utah and the USA have been added to 
illustrate wider trends. 

 

 

Year-to-year variation in total deaths, 349 English Local Authorities 

Year-to-year variation in total deaths was plotted versus weighted population density for each local 
authority in England and Wales as shown in Figure 2. As can be seen, the average year-to-year volatility 
increases with weighted population density and appears to reach a maximum (saturates) around a 
population density of 7,000 per square Km (18,000 per square mile). A linear relationship may apply, 
although the high scatter after averaging using 10 consecutive local authorities indicate that other factors 
also influence the volatility. These could include weather patterns and social behaviours. The relative 
number of nursing home beds in each local authority will make a significant contribution to the volatility 
see in Figures 2 to 5 (Jonker et al 2013). 

While average volatility is a useful measure, the standard deviation (STDEV) around the average is a better 
measure of the volatility in costs and capacity relating to the last year of life. This is shown in Figure 3. 
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Figure 2: Average year-to-year difference (volatility) in deaths for English and Welsh local authorities, 
2001 to 2020, versus weighted population density. Each point is the average of 10 local authorities 
ranked by weighted population density, but data is selected at 100 increments of weighted population 
density. 

 

As can be seen in Figure 3 a non-linear relationship may be possible up to a maximum (saturation) 
somewhere around 8,000 per square Km (21,000 persons per square mile). Many local authorities in 
London exceed this upper limit with 21,362 per square Km in Tower Hamlets, 20,430 in Westminster, i.e., 
up to 52,000 per square mile. 

However, the key point has been established that population density is a key variable in volatility for costs 
and capacity associated with end-of-life. Also, that this relationship reaches a maximum (saturates) as 
predicted from theory (Hu et al 2013). Scatter in the relationship indicates that additional factors are 
involved at a local level. Recall that equal population density does not imply equal levels of air pollution. 
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Figure 3: Standard deviation (STDEV) associated with the year-to-year differences in total deaths, as per 
Figure 2. 

 

Figure 4: Relationship between raw population density and the adjusted standard deviation (STDEV) 
associated with year-to-year deaths in 58 Scottish and Northern Ireland local authorities, 2001 to 2020. 
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Year to year variation in total deaths in 58 Scottish and Northern Ireland local authorities 

Population density in Scotland and Northern Ireland is far lower than that in England. At the time of this 
study, small area population densities for these countries were not available and so unweighted (raw) 
population density has been used. 

Figure 4 shows the relationship between the standard deviation in year-to-year deaths, after adjusting for 
the effect of size on the standard deviation (as above) and raw population density. Each point is an average 
of five local authorities. On this occasion, the standard deviation has been calculated relative to that 
expected for size (number of deaths). Recall that raw population density significantly underestimated the 
weighted population density (Decision Science News 2017). Volatility is around 20% higher at around 
3,500 per square Km. However, even within the limitations of this data, the relationship between 
population density and volatility is still clear.  

Volatility in Excess Winter Mortality 

Since higher deaths occur during the winter months a measure called excess winter mortality (EWM) has 
been developed which compares average deaths in the four ‘winter’ months with the eight ‘non-winter’ 
months (Healy 2003). A study conducted in the South West Region of England between 1994 and 1998 at 
electoral ward level did not detect any association between Townsend deprivation score or population 
density and the average winter mortality (Lawlor et al 2002). This study did not note a strong association 
between average EWM and population density. This is because EWM is largely driven by multiple factors, 
the most important seeming to be indoor temperature (National Institute of Care Excellence 2009, 
Hamilton et al 2017, Ogbebor et al 2018, Thai et al 2019). These other factors would act to obscure any 
relationship. However, no one seems to have investigated the year-to-year volatility in EWM and any 
relationship with population density. 

The standard deviation associated with raw EWM needs to be adjusted for size (number of deaths) since 
there will be greater statistical scatter associated with the smallest local authorities. This adjustment was 
made by fitting a power-law relationship to the raw data of STDEV in EWM versus average deaths in each 
local authority. STDEV was adjusted to the equivalent at 1,000 deaths per annum which is roughly the 
average size for local authorities. Each point is an average of 10 local authorities as above. 

Figure 5 shows the resulting relationship between the standard deviation associated with EWM and 
population density. A non-linear relationship appears to apply up to a maximum (saturation) at around 
8,000 per square Km. As above, volatility is roughly double in the most densely populated areas as that 
observed in least densely populated areas. A third-order polynomial has been used to explore the shape 
of the possible relationship. Multiple issues are involved in EWM (National Institute of Care Excellence 
2009), however, while a full understanding of the causes may be unclear its impact upon capacity and 
costs is clear. To my knowledge, this is the first large study of volatility in EWM using 20 years of data 
covering 349 local authorities with weighted population density. 

In conclusion, for deaths (end-of-life) both the average volatility and the standard deviation around the 
average show dependence on population density with implications to capacity and cost volatility. Any 
relationship with the average EWM is obscured by the multiple factors affecting the average, however, 
the standard deviation (Volatility) shows a clear relationship. 
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Figure 5: Standard deviation (STDEV) associated with Excess Winter Mortality (EWM) in English and 
Welsh local authorities (2000/01 to 2019/20) 

 

Based on the proposal that mini-infectious outbreaks are occurring in different locations data relating to 
admissions from the English NHS will be used to explore if parameters such as length of stay and the 
gender ratio of admissions show unexplained year-to-year volatility. Finally, volatility in health care 
worker sickness absence across English regions will be explored. 

Appendix 1 gives a wider discussion of the role of place in the volatility associated with weighted 
population density. 

Length of stay shows ‘unexplained’ undulations 

Hospital average length of stay (LOS) has been a traditional measure of hospital efficiency which is 
presumed to be under the direct control of hospital managers (Buttigieg et al 2018). However, if we accept 
the hypothesis that multiple infectious outbreaks lie behind surges in admissions and deaths for many 
common conditions, then it should follow that LOS should likewise show ‘unexplained’ peaks and 
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analysis. Over this period the underlying trend to lower LOS (average of 5.8 days in 2005/06 falling to 3.5 
days in 2018/19 and 2019/20) was fitted to a polynomial equation and the difference between trend and 
actual calculated.  

Figure 6: Deviation of financial year average length of stay for the medical group of specialties from the 
underlying trend for England, 2005/06 to 2019/20. The medical group includes all medical specialties, 
clinical specialties, haematology, oncology, rehabilitation, and palliative care. 

 

The medical group includes all the medical specialties, haematology, oncology, and various clinical 
specialties. The expected ‘unexplained’ trends emerge which are the combined result of subtle changes 
in case mix and patient illness severity arising from the multitude of infectious outbreaks which will have 
occurred across England over this period. 

While this is not conclusive proof of the proposed cause, it nevertheless suggests that more detailed 
investigation is warranted. 
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Table 2: Top 15 specialties where the proportion of male admissions shows higher than expected 
variation (STDEV). England 1998/99 to 2019/20 

Specialty 

Average 
male 
admissions STDEV 

All Specialties 7,166,888 2.21 
Medical Oncology 95,397 1.63 
Nursing 10,658 1.59 
Allied Health Professional 5,633 1.56 
General surgery  817,509 1.55 
Clinical oncology (radiotherapy) 134,139 1.54 
Mental illness 65,067 1.47 
Urology  513,585 1.47 
Tropical Medicine 506 1.31 
Forensic psychiatry  2,200 1.28 
General medicine 1,316,796 1.25 
Accident & Emergency (A&E) 220,847 1.22 
General Practice (mainly elderly) 31,794 1.16 
Plastic surgery  123,989 1.08 
General pathology  835 1.04 
Rehabilitation 13,959 1.03 

 

Table 3: ICD-10 chapters (body systems) where the proportion of male admissions shows higher than 
expected variation, England 1998/99 to 2019/20 

ICD-10 
Chapter Description 

Average 
male 
admissions STDEV 

A Mainly bacterial 105,358 2.52 
R Signs & Symptoms 845,902 2.21 
S Injuries & fractures 347,468 2.05 
J Respiratory 580,129 1.83 
N Genitourinary 404,707 1.79 
K Digestive 921,397 1.51 
Z Health Services 488,230 1.41 
C Cancers 694,212 1.38 
I Circulatory 730,816 1.13 
D Blood forming 283,055 1.10 
F Mental & behavioural 124,760 1.06 
B Virus, fungi, protozoa 63,538 0.97 
H Ear & mastoid 284,874 0.96 
M Musculoskeletal 451,518 0.81 
E Endocrine & metabolic 128,155 0.80 
P Neonatal 131,446 0.72 
T Burns, poisoning, etc 182,450 0.61 
G Nervous 161,028 0.55 
L Skin & subcutaneous 173,277 0.53 
Q Congenital 65,423 0.48 
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The genders differ in their response to and susceptibility to many diseases and infectious agents (Canadian 
Women’s Health Network 2012, Klein and Roberts (eds) 2015), which extends to differential infection with 
strains of the same pathogen (Long et al 2000). This author is not aware of any study which has followed 
the ratio of male to female admissions over time, however, given the differential susceptibility of the 
genders to inflammation and infection it would be expected that certain specialties may be more 
susceptible to the infectious landscape proposed in this study. This is an entirely neglected area of 
investigation (Jones 2011, 2012, 2013) and the unexplained trends have probably been dismissed as 
‘statistical’ scatter or ‘poor’ coding. Tables 2 and 3 shows that this is indeed the case for both specialties 
and diagnoses within body systems. The gender ratio in this study is expressed as the percentage of male 
admissions. 

Figure 7: Trend in the proportion of male admissions for diagnosis R69 (unknown and unspecified causes 
of morbidity and mortality) in England between 1998/99 and 2019/20. The standard deviation due to 
chance alone varies from ± 0.03% to 0.05% depending on the year, i.e., chance variation can be 
categorically excluded 

 

 

The specialties in Table 2 mainly involve medical care or surgery to remedy the outcomes of medical 
disease processes. Specialty A&E is mainly medical assessment. The presence of mental health specialties 
is entirely consistent with the known relationships between immune function and mental health (Anisman 
et al 2019), and the fact that some pathogens are either neurotropic or associated with neuropsychiatric 
disorders (Tucci et al 2017, Munjal et al 2017, Ciurkiewizc et al 2020).  
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I have previously documented unusual trends in admissions for injuries and fractures as per Table 3, and 
the explanation lies in the fact that the inflammatory response to an infection will generally accompany 
headache and an associated increase in clumsiness; hence, an increase in falls, injuries and fractures. Most 
of these admissions are for the elderly as a medical admission, but more serious fractures are to trauma 
and orthopaedics. Note the difference between Chapters A and B in Table 3 which cover different groups 
of pathogens. 

The entire list of ICD-10 chapters has been included in Table 3 (except Childbirth) to show the wide range 
in volatility between chapters. The situation at specialty level can be replicated for individual diagnoses 
and diagnosis R69 (unknown and unspecified causes of morbidity and mortality) is shown in Figure 7. 
Diagnosis R69 is a highly relevant diagnosis since it is indicative of “we know you are ill enough to get 
admitted but we don’t know what is wrong with you”. This is the type of diagnosis that would be expected 
to arise from the subtleties of undocumented infectious outbreaks and their medical consequences (as 
seen in Chapter R in Table 3). 

In the U.S. commercial pressure to maximize income would mean that R69 would generally be up coded 
by conducting more investigations to find something ‘wrong’ with the patient. The general ambiguity 
resulting from multiple infections and inflammation would then be lost. 

As a final comment, it is my belief that the current system of diagnostic coding is unable to reflect the 
nuances of multi-organism infection, inflammation, and immune function in the need for admission 
among the elderly. 

Considering the above, it should come as no surprise to note that the gender ratio at birth also shows 
unexplained volatility (Jones 2017). 

Having investigated the presence of curious patterns in LOS for admissions and the gender ratio of 
admissions, the issue of sickness absence rates among health care workers can now be explored. 

Sickness absence in health care workers 

Health care workers are directly exposed to patients and therefore are a high-risk group for the acquisition 
of a wide range of infections. If the proposed mechanism of infectious exacerbation of existing illness is 
correct, then the year-to-year volatility in sickness absence among health care workers should go from 
less volatile in the least densely populated region through to most volatile in the most densely populated 
region. 

This relationship is confirmed in Figure 8 where the South West of England (Cornwall, Devon, Dorset, 
Somerset, Wiltshire, etc) is the least densely populated, followed by the East of England (Norfolk, Suffolk, 
Cambridgeshire, Essex, etc) with London being most densely populated. The North West contains the 
large Liverpool and Manchester conurbations. The South East of England forms a ring around London but 
does not contain any large cities and thus forms the third of the lowest population density regions. 

The predicted upper limit to the effect of population density on disease transmission (Hu et al 2013) is 
seen in the only slightly higher volatility in London compared to the North West. 
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Figure 8: Relative volatility in year-to-year NHS staff sickness absence rates. Volatility in absence rates 
adjusted to equal number of total staff. 

 

 

Discussion 

It is often the ‘experts’ who are the last to accept the shift to a new paradigm (Greenwood 2019). Indeed 
as ‘everybody knows’ hospital LOS is a measure of efficiency/inefficiency and staff sickness absence rates 
are the responsibility of the employer. Among government agencies and politicians in the UK, there is a 
presupposition that periods of poor financial or operational performance are the direct result of poor 
management or the inability to manage demand. 

This study has attempted to present such a new paradigm to explain why population density and 
associated pollution are important from an infectious/inflammatory perspective. 

It goes without saying that while levels of pollution are influenced by population density they are also 
influenced by geography and industry. Studies are therefore required which link population density with 
directly measured levels of pollution. The exact role of population density is itself influenced by levels of 
household crowding and the health care behaviours of different social groups. Population mobility is also 
an important factor in disease transmission (Wang et al 2020). 

When the effects of metrological variables are also included it is unsurprising that the volatility in health 
care admissions and costs remains highly location specific (Jones 2012b-f). Sickness absence represents a 
considerable cost to health care organizations and higher volatility in such costs makes the process of 
budgetary management even more difficult. Once again this is nothing to do with failure to manage staff 
sickness absence rates. See the Further Reading link for more studies on this topic. 
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Further research 

Further studies are required regarding the volatility in deaths, admissions, length of stay, gender ratio, 
and sickness absence where both small-area population density and levels of pollutants are known along 
with socio-demographic factors such as poverty, social group composition, and age. 

Health insurers need to re-analyse their data to see if these concepts apply more widely. Hospitals need 
to be aware that the volatility in capacity pressures is indeed location specific and conduct deeper analysis 
of their own past trends. 

Conclusions 

The volatility in deaths, the gender ratio of admissions and health care worker sickness absence supports 
the notion that outbreaks of a wide variety of infectious agents are the primary outcomes of the 
underlying relationships with weighted population density. Inflammation is the actual causative 
mechanism. These will then contribute to the location or place specific nature of financial and capacity 
risk, which is further modified by social group (which includes ethnicity) and other factors such as 
population mobility. This has nothing to do with ‘incompetent’ management or the supposed inability to 
manage demand. It is merely a reflection of reality. 

While low population density may moderate the effect of volatility, the resulting smaller hospital size and 
the relationships between size, occupancy and turn-away (see Part 1 and the link to further reading) will 
more than counterbalance the population density effects. Small hospitals are always at a disadvantage. 

Part 3 of this series will use influenza and COVID-19 as examples of complex interactions between 
pathogens. It will also discuss the possibility that outbreaks of a novel type or kind of infectious disease is 
confounding traditional analysis of trends in capacity and costs. It will also present the possibility that 
these outbreaks are responsible for the health insurance underwriting cycle. 

Much of the emphasis of this series is that the absolute number of deaths is a measure of that which is 
otherwise not fully measurable. Hence, we can count back from death and document the number and 
cost of hospital admissions, bed days, outpatient attendances, emergency department visits, cost of 
drugs, etc. The cost of dying can be quantified. However, the unmeasurable part is how much morbidity 
is associated with the effect of the agents which precipitate final demise. Part 4 attempts to estimate the 
non-end-of-life related morbidity which these agents are also exacting upon wider human health. 

Data Sources and methods 

Data sources 

Monthly deaths in U.S. states were obtained from the National Center for Health Statistics (2020). 
Inpatient admissions in England 1998/99 to 2019/20 were obtained from NHS Digital (2020a). NHS staff 
sickness rates were also from NHS Digital (2020b). 

Monthly deaths in England and Wales were from the Office for National Statistics (2020a), for Scotland 
from National Records of Scotland (2020a), and for Northern Ireland were by request from the Northern 
Ireland Statistics and Research Agency. 

Data relating to mid-2019 population and population density at Lower Super Output Area (LSOA) in 
England and Wales were from the Office for National Statistics (2020b). Raw population density in 
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Northern Ireland was from the Northern Ireland Statistics and Research Agency (2020), while that for 
Scotland was from National Records of Scotland (2020b). 

Methods 

Weighted population density (persons per square Km) for English and Welsh local authority areas were 
obtained by weighting the population density in each LSOA by the LSOA population, for each local 
authority area. Hence using the sum-product function (population, population density) divided by sum 
population. This was performed using Microsoft Excel. There is 2.59 square Km per square Mile. 

Excess Winter Mortality (EWM) was calculated as a rolling percentage difference of eight months versus 
four months. Hence the percentage difference between average deaths September to December versus 
average deaths January to August. Move forward one month and recalculate. The maximum for the rolling 
EWM calculation usually occurs in the four months ending March, however, this calculation can peak 
between the four months ending February to the four months ending April. The maximum was chosen for 
each winter. The standard deviation (STDEV) of EWM was adjusted for local authority size by plotting the 
STDEV versus average deaths (2001 to 2020) and a power-law line of best fit calculated. STDEV was 
adjusted to the equivalent of 1,000 deaths per annum. 

The year-to-year difference in total deaths was calculated by constructing a rolling 12-month total of 
deaths commencing the 12-months ending December 2001. This was compared to the 12-months ending 
December 2002 as the absolute value of the difference calculated as a standard deviation equivalent 
assuming Poisson statistics for whole numbers. Hence the difference divided by the square root of the 
average deaths in year n and n+1. Move forward one month and recalculate. This transformation is 
required to adjust for the effect of size. The standard deviation of the transformed differences was then 
calculated. Analysis of monthly sickness absence rates in NHS Regions was conducted in the same manner. 
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Further Reading 

Further studies relating to factors affecting financial and operational risk in healthcare can be found at 
http://www.hcaf.biz/2010/Publications_Full.pdf 
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Appendix 1: The role of location or place in the expression of weighted population density 
 
A logical extension of the role of weighted population density would be to rank every small area by 
population density and determine if the relationship with volatility still holds. As part of the supporting 
analysis behind this study deaths and population density for lower super output areas (LSOA) in England 
and Wales were ranked by population density.  
 
Each LSOA contains around 1,500 persons (range 680 to 16,000) and have a size between 0.02 square Km 
(London) to 670 square Km in remote locations (ONS 2020b). Apart from lowest volatility for the most 
sparsely populated LSOA containing fewer than 100 people per square Km, i.e., national parks, forestry, 
remote areas and smaller islands (all with near absence of air pollution), a general relationship with 
population density could not be observed. 
 
Clearly every small area is the end-product of the location or place where it is situated. Hence, small areas 
with equal population density will experience markedly different levels of pollution, will be exposed to 
markedly different weather patterns, and will contain widely different social groups and their associated 
health behaviours, economic circumstances, political views, and different levels of population mobility 
(Carozzi et al 2020, Wang et al 2020). The number of nursing home beds in each small area is a major 
confounding factor (Jonker et al 2013). 
 
For this reason, the calculation of weighted population density at local authority level represents a 
suitable compromise. However, further smoothing was required to reveal the underlying relationship 
between weighted population density and volatility. 
 
The end conclusion is that volatility will always be location or place specific because the volatility is a mix 
of weighted population density plus a variety of other factors and complex interactions between these 
parameters. 
 
The pragmatic approach is therefore to measure the observed volatility for each hospital, health authority, 
commissioner, without necessarily needing to know exactly why one location or place is higher/lower 
than another. Part 4 of this series will therefore look at the size required to average out all the small area 
components to arrive at the minimum possible volatility. 
 
The study of Carozzi et al (2020) failed to find a relationship with population density because they used 
the somewhat meaningless ratios of cases per 1,000 population and deaths per 1,000 population. Cases 
per 1,000 population needs to be age-weighted to account for the fact that maximum infection rate occurs 
at age 20 to 29. Deaths per 1,000 population is likewise not weighted. The best measure for deaths is an 
excess mortality calculation of either COVID-19 deaths per 100 deaths in the absence of Covid-19 (usually 
2018 or 2019 depending on availability) or excess all-cause mortality, which accounts for unreported 
COVID-19 deaths. 
 
 

about:blank
about:blank

	Klein S, Roberts C (eds). Sex and gender differences in infection and treatments for infectious diseases. Springer International Publishing, 2015. https://link.springer.com/book/10.1007%2F978-3-319-16438-0
	Koehrsen W. The Poisson distribution and Poisson process explained. 20 January 2019. https://towardsdatascience.com/the-poisson-distribution-and-poisson-process-explained-4e2cb17d459 (accessed 5 November 2020)
	Lamsal L, Martin R, Rarrish D, Krotkov N. Scaling relationship for NO2 pollution and urban population size: A satellite perspective. Environ Sci Technol 2013; 47(14): 7855–7861.
	Public Health England. Notifiable diseases and causative organisms: how to report. Updated 26 October 2020. https://www.gov.uk/guidance/notifiable-diseases-and-causative-organisms-how-to-report#list-of-notifiable-diseases (accessed 1 November 2020).
	Rabbitt P, Lunn M, Wong D. Death, dropout, and longitudinal measurements of cognitive change in old age. J Gerontol: Psychological Sciences 2008; 63B(5): P271-P278.

