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Abstract 
 
Public health agencies have promoted a single pathogen view of infection which simplifies the message 
about vaccination. However, research over the past 20 years shows a far more complex set of interactions 
between multiple pathogens, the nose/throat microbiota, the gut microbiota, immune function, and 
ageing. Influenza vaccination is effective at reducing General Practitioner (GP) visits for influenza like 
illness (ILI), for reducing health care staff sickness absence, and in reducing hospital admission due to 
influenza.  
 
The narrative regarding influenza mortality has been overly simplified and the levels of reported deaths 
are more correctly due to interactions between a mix of pathogens. There is no such thing as a single 
pathogen winter. There is mixed evidence that influenza vaccination protects against death from 
influenza. Influenza vaccination does not seem to diminish excess winter mortality (EWM) – with EWM 
being the complex outcome of the mix of pathogens interacting with metrological variables. In those likely 
to die in the next year, while influenza vaccination may protect against death from influenza per se, this 
merely creates space for another pathogen to trigger final demise. The central problem is that there is no 
100% accurate method to determine who is in the last year of life. For this reason, all elderly should be 
vaccinated. The ratio of male to female deaths and admissions appears to be an indicator of which mix of 
pathogens predominate each winter. 
 
Amid all the conflicting trends there is room for the action of a new type or kind of infectious disease. This 
new disease may be triggered by the novel action of a common pathogen or may be the outcome of the 
multiple interactions between pathogens throughout each year. While outbreaks of this new disease can 
occur throughout the year they seem to occur more commonly at the interface between winter and 
spring. These outbreaks cause deaths and medical admissions to suddenly shift to a higher level, stay at 
the higher level for most commonly 12 months but shorter and longer periods also occur, deaths then 
shift back to the usual levels while medical admissions seem to sustain a more lingering effect. The 
combined interaction of the mix of winter infections plus outbreaks of the new disease generate a 
complex set of cost and capacity challenges. This complex set of challenges is completely ignored in the 
funding formulas used to distribute resources between different populations.  
 
Issues of population density discussed in Parts 1 and 2 are highly relevant. Steady state thinking and silo 
mentality is a hindrance when seeking to fully understand issues of financial risk and capacity surges. Part 
4 investigates why deaths are serving as a wider proxy for morbidity and how the number of deaths can 
be used as a tool to determine the optimum size for insurers, HMOs, healthcare commissioners to achieve 
minimum volatility in costs. 
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Key Points 

• Public health agencies have promoted a simple message about influenza mortality to maintain 
adherence to seasonal influenza vaccination 

• Evidence for a more complex ‘story’ has been emerging from 1996 onward 
• The ratio of female to male deaths each winter shows high variation and looks likely to reflect a 

complex mix of cold and the exact proportions of pathogens at work each winter 
• Influenza and other respiratory pathogens all interact in complex ways including inhibition, co-

operation and worsened clinical outcomes 
• Respiratory Syncytial Virus (RSV) mortality in the elderly is equal or greater than from influenza 
• Amid the ambiguity surrounding winter mortality there is considerable scope for outbreaks of a 

new type or kind of disease which may be triggered by a single common pathogen or may be the 
outcome of more complex interactions between pathogens 

• Details of these new outbreaks are presented for the USA and the UK 
• The net result is that cost and capacity trends are far more complex than have hitherto been 

appreciated 
• Financial and capacity planning will need to employ far more sophisticated methodologies such 

as wavelet analysis, Fourier transforms, ARIMAs, etc along with the recognition that it is nearness 
to death rather than age per se which is driving the marginal changes in cost and capacity surges 

 
Influenza Key Points 

• The very fact that a large proportion of the target population for influenza vaccination have 
entered the transition called “the last year of life”, implies that while influenza vaccination may 
prevent death from influenza, death will then occur due to another pathogen 

• This will, of itself, diminish the vaccine effectiveness rate, which never achieves 100% and much 
less than this is the elderly. One of many complicating factors 

• If the influenza(s) mutate (called antigenic drift) in the interval between vaccine formulation and 
vaccination, it is possible to get negative vaccine effectiveness, i.e., the unvaccinated can fare 
better than the vaccinated – fortunately, this does not happen every year and so vaccination is 
still considered to have a positive balance between risks and rewards 

• Likewise, allergic reactions to vaccination are more common than appreciated – once again not 
serious enough to advise against vaccination 

• As always, the population is vaccinated to the point where there is economic benefit 
• Vaccination is effective at diminishing GP visits for influenza like illness, and for diminishing 

respiratory hospital admissions – the effectiveness at diminishing (ultimate) death is less clear – 
which goes back to the last year of life paradigm 

• To avoid the anti-vaxxers seizing on this as ‘evidence’ that vaccination does not work or is too 
dangerous Public Health agencies may have been forced to present a simplified public message 
which glosses over key issues 

• Influenza(s) operate in a complex interacting pool of infectious agents, which itself interacts with 
the nose/throat microbiota and with the gut microbiota 

• Simultaneous vaccination against influenza(s) and other common winter pathogens would yield a 
far greater benefit 

• Year-to-year volatility in the outcomes of this infectious cocktail (which now includes COVID-19) 
is remarkably high, hence the observed cost and capacity surges 
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Introduction 
 
In the anonymous English poem “Who killed cock robin?” the reader is guided to reach the conclusion 
that multiple conspirators were involved in the robin’s death. Parts 1 and 2 of this series have introduced 
the biological and medical concepts behind higher-than-expected volatility (risk) in hospital capacity and 
health care costs which are regulated by inflammatory signals (Jones 2020a,b).  
 
The key points so far in the series are: 
 
1. Very few people look at volatility because they tend to look at averages and trends in the average. 
2. Population density both should (from common sense) and does (from theory and practice) affect 

disease transmission. 
3. Air pollution is a central factor since it is associated with population density and promotes chronic 

inflammation. 
4. Illness and disease is far more multi-pathogen than realised. 
5. Infection in the young may cause discomfort, however, in the elderly can lead to hospitalization 

and death. 
 
Unusual behaviour in Part 2 regarding length of stay and the gender ratio of admissions tends to invoke 
cognitive dissonance, i.e., we think we know how healthcare trends behave, and such issues are a threat 
to this belief system. The evidence is then rationalised away. This is especially true in health policy where 
the policy maker seeks to simplify the 'how things behave’ such that they 'believe' that the push and pull 
of policy will work in the real world. This can lead to cherry picking of the evidence with consequent policy-
based evidence rather than evidence-based policy (Marmot 2004). Indeed, the process of setting health 
insurance premiums and calculating hospital capacity may be overly simplistic. 
 
This 3rd part of the series is about how outbreaks of a new type or kind of disease may be acting as a 
confounding factor in the analysis of health trends. This is based on 30 years of research by this author. It 
has been my experience that Public Health Agencies typically seek to promote influenza as the cause for 
anomalies in the trends (Jones 2013a, Newton et al 2015), and so we must first commence with an 
understanding of the principles of influenza spread and resulting morbidity and mortality. Is influenza 
acting in splendid isolation or are more nuanced forces at work? 
 
Having investigated the more complex issues behind influenza outbreaks and the interactions between 
pathogens we can then turn to anomalous trends in both deaths and medical admissions and how these 
may be affecting both capacity pressures and costs. 
 
However, before investigating these matters it is important to re-emphasize the role of nearness to death 
(NTD) rather than age as a risk factor. This is an important component in forecasting health care costs, 
setting health insurance premiums and in hospital capacity planning. 
 
Nearness to death (NTD) and age 
 
The literature is full of studies seemingly linking age and risk from a wide variety of factors. Part 2 in this 
series sought to emphasize the role of nearness to death (NTD) rather than age per se in health care 
admissions, bed occupancy and costs (Jones 2020b). Chronological and biological/physiological age are 
not the same (Burkle et al 2015). In England & Wales in 1963 the most common age to die was 74 in males 
and 82 in females. By 2018 this had risen to 86 in males (+12 years) and 88 in females (+6 years). For 
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deaths at or above the most common age, in 1963 some 38% of males died age 74+, while in 2018 around 
28% died 86+. In females 28% died age 82+, but in 2018 some 37% died age 88+ (ONS 2020). The shape 
of the age profile for NTD is changing with time which will have a knock-on effect against admission rates 
in various age bands. 
 
Applying rates of hospital admission by age band from 1963 to 2018 would give nonsensical answers 
(Jones 2021a) simply because the 1963 data set contains far more persons in the last year of life in the 
age band 74+. In fact, for many years the highest age band in the English Hospital Episode Statistics (HES) 
aggregated data was age 75+. 
 
Omission of NTD acts to spuriously overestimate the importance of age in health care utilisation (Rabbit 
et al 2008, Wettstein et al 2019). Persons of identical age therefore experience different risk of dying 
depending on where they live (Dwyer-Lindgren et al 2016, Boulieri and Blangiardo 2020). Age alone is 
therefore an unreliable predictor of future resource needs. Unsurprisingly six trajectories of disability have 
been identified during the last year of life with the course of disability closely tracking the prevalence of 
hospital admission (Gill et al 2015). 
 
As an example, lower and upper respiratory tract mortality is extremely high in sub-Saharan Africa (GBD 
collaborators 2017, Shi et al 2020). Abject poverty, contaminated water, malnutrition, and the near 
absence of health care for many means that despite a relatively young age, some of the population has 
entered that period of rapid decline called the last year of life. In the West, serious drug and alcohol abuse 
plus poverty create the same situation. 
 
Hence the repeated observation that highest rates of acute hospital usage occur in the last year of life, 
almost irrespective of the age at death, and that acute admission especially escalates during the last six 
months of life. Indeed, the risk of dying within one year for persons hospitalized for any reason is at least 
8-times higher (increasing with younger age) than in the age-matched non-hospitalized population (Hohn 
et al 2018). Persons in the last year of life are consistently over-prescribed medications of which 25% are 
considered ‘futile’ (Curtin et al 2018). 
 
Frailty is a key measure of nearness to death (Finkel et al 2019), along with the onset of exhaustion (Hajek 
et al 2018) and is therefore associated with increasing falls and fall related injuries, emergency 
department revisits and hospitalisations (Travis et al 2001, Shankar et al 2020). Loss of independence is 
another measure and persons with a higher number of limitations in the activities of daily living (ADLs) 
have a shorter life expectancy, lower active life expectancy and disability-free life expectancy (Jia and 
Lubetkin 2020). Pneumonia is highly prevalent in the last months of life (Travis et al 2001). A Frail-safe 
score gave good prediction of death withing 6 months of admission in the elderly (Lewis et al 2020). 
 
In almost all Western countries there was a baby boom toward the end of World War II which implies that 
while the birth rate is currently declining, all the baby boomers are about to die in increasing numbers 
(Office for National Statistics 2018). As it were, NTD has become the new (although old) hot topic in 
healthcare cost and capacity planning. However, in most western countries there are only around 8 to 11 
deaths per 1,000 population (World Bank 2020). Within each country this is highly location specific, 
however, hospital admissions among those not in the last year of life outweigh those who are. Multi-
compartment models using both age and NTD are therefore required (Jones 2021b). An example of such 
multi-compartment models can be found in the study of prescription costs in Ireland (Moore et al 2017).  
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Influenza epidemiology revisited 
 
This section is not seeking to dispute the fact that various influenza(s) are serious pathogens which causes 
considerable morbidity and mortality. Rather it seeks to establish the epidemiological basis of seasonal 
infectious outbreaks and epidemics, of which influenza(s) are an important part. Far greater detail is given 
in Appendix 1. They key issue is to elucidate the possible effects on costs. 
 
Not all influenza(s) are the same 
 
Influenzas come in a multiplicity of strains and subtypes (called clades). The influenza A virus protein PB1-
F2 has been linked to the pathogenesis of both primary viral and secondary bacterial infections. The study 
of Alymova et al (2011) gives relevant insight. They observed that Influenza A viruses have historically 
expressed full-length PB1-F2 proteins with either proinflammatory (e.g., influenza A/Hong Kong/1/1968) 
or noninflammatory (e.g., influenza A/Wuhan/359/1995) properties. PB1-F2-derived peptides containing 
the proinflammatory motif caused significant morbidity, mortality, pulmonary inflammation, and 
increased bacterial infection with Streptococcus pneumoniae in mice, manifesting as increased acute lung 
injury and the presence of proinflammatory cytokines and inflammatory cells in the lungs. Infections of 
mice with an otherwise isogenic virus engineered to contain this proinflammatory sequence in PB1-F2 
demonstrated increased morbidity resulting from primary viral infections and enhanced development of 
secondary bacterial pneumonia.  
 
The presence of the PB1-F2 noninflammatory (P62, H75, Q79, and S82) sequence in the wild-type virus 
mediated an antibacterial effect. These suggest that loss of the inflammatory PB1-F2 phenotype that 
supports bacterial superinfection during adaptation of H3N2 viruses to humans, coupled with acquisition 
of antibacterial activity, contributes to the relatively diminished frequency of severe infections seen with 
seasonal H3N2 influenza viruses in recent decades compared to their first two decades of circulation 
(Alymova et al 2011). 
 
This study nicely takes us back to the central role of inflammation discussed in Part 2. Inflammation is a 
two-edged sword. In the lung, recruitment of immune effectors is essential to eliminate bacteria and virus-
infected cells, but inflammatory cytokines drive changes in the lung conducive to increased pathogen 
replication. Excessive accumulation of inflammatory cells also hinders lung function, possibly causing 
death of the host. These changes are highly likely to be age dependent (Aguilera and Lenz 2020). 
 
Inflammation is also a key trigger for dormant pathogens to reactivate. This is especially true for the 
immune modifying virus cytomegalovirus (CMV). Inflammatory triggers and/or immune suppression make 
this a serious pathogen to those with immune therapy, infected with other immune modifying pathogens 
and for those in a weakened state such as burns victims or those in intensive care (Jones 2013b,c, 2014a,b, 
2015a,b). CMV plus elevated inflammation is therefore associated with higher mortality (Simanek et al 
2011), i.e., pathogens do not operate in splendid isolation. 
 
Influenzas typically need to have a new mutation to be highly virulent. For example, the winter of 1977/78 
was atypically mild for a new epidemic strain; the influenza mortality rate was <5 out of 100,000, less than 
typical seasonal influenza infections of 6 per 100,000. In addition, the 1977 strain appeared to affect only 
those 26 years of age and younger. There was a simple explanation: the virus was not novel. The 1977 
strain was virtually identical to an H1N1 influenza strain that was prevalent in the 1950s but had since 
dropped out of circulation (Rozo and Gronval 2015). 
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Table 1: Studies demonstrating considerable interaction between respiratory pathogens and how immunity is maintained 
 

Type of study Date  Findings Comments Authors 
Mortality in England and 
Wales, 1975 to 1990 

1996 Over 15 winters the estimated 
mortality from RSV was 60–80 
% greater than due to 
influenza. 

Deaths correlated strongly with influenza A and B reports, 
temperature, and interactions between aggregated URTI and 
temperature, and RSV outbreaks and temperature.  

Nicholson 
1996  
 

 Multivariate time-series 
methodology to examine 
the impact of RSV and 
influenza on hospital 
admissions for 
bronchiolitis, pneumonia, 
and COPD.  

2006 COPD and pneumonia are not 
influenced by RSV (P=0·2999 
and 0·7725), but RSV does 
influence bronchiolitis 
(P=0·0001). Influenza was 
found to influence COPD, 
pneumonia, and bronchiolitis 
(P<0·0001).  

Seemingly Respiratory Syncytial Virus (RSV) and influenza can 
interact via bronchiolitis (which can be misdiagnosed). 

Upshur et al 
2006 
 

Acute-phase respiratory 
specimens for VIRAP 
diagnosis protocol during 
spring 2006 peak 
infection season 
processed in parallel by 
analysis with Genaco 
molecular diagnostic 
panels. 

2008  A total of 1,742 specimens 
were examined for 21 relevant 
pathogens.  

Multiple infections are frequent and indicate complex 
interactions between pathogens. Statistically relevant 
association patterns (both positive and negative) were 
observed. Some interactions are substantiated by prior reports; 
however, several specific patterns have not been reported 
previously. There is clinical evidence supporting a hypothesis 
that these coinfections are medically relevant and that effective 
treatment for severe respiratory tract infections will 
increasingly require diagnosis of all involved pathogens, as 
opposed to single-pathogen reporting. 

Brunstein et 
al 2008 
 

Review of deviations in 
influenza seasonality 

2012 Investigated issues of 
terminology of both 
seasonality and influenza 
illness in terms of past and 
present-day studies 

Seasonal patterns emerge from the interaction of individual 
factors behaving as coupled resonators. These concepts seem 
applicable to the complex interactions between winter 
pathogens and their host as discussed in this table and reflected 
in the Excess Winter Mortality variances reported here. 

Moorthy et 
al 2012 

Nonsocomal Clostridium 
difficile infection (CDI) 
following influenza and 
pneumonia. 

2013 CDI infection peaks following 
the peak in influenza and 
pneumonia. 

Peak pneumonia prevalence preceded peak CDI incidence by 9 
weeks (CI 4.6 - 13.7). A 1% increase in pneumonia prevalence 
was associated with a cumulative effect of 11.3% over a 6-
month lag period (relative risk = 1.113, CI: 1.07 - 1.15).  

Brown et al 
2013 
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Type of study Date  Findings Comments Authors 
In vivo and in vitro 
studies. 

2014 Coinfection with Respiratory 
syncytial virus (RSV) and S. 
Streptococcus pneumoniae is 
associated with severe and 
often fatal pneumonia. 

Following incubation with RSV or purified G protein, 
pneumococci demonstrated a significant increase in the 
inflammatory response and bacterial adherence to human 
ciliated epithelial cultures and markedly increased virulence in a 
pneumonia model in mice.  

Smith et al 
2014 

Community and hospital-
based surveillance, 2003 
through 2009 in San Luis 
Potosí State, México. 
Alternating patterns of 
Respiratory Syncytial 
Virus (RSV) and influenza. 

2015 The data analyzed consists of 
community-based and 
hospital-based Acute 
Respiratory Infections (ARI) 
consultations. 

The model was able to capture the two main cyclic behavior 
observed in data: the annual one driven by yearly climatic 
variability which is exploited by RSV (since the power of its 
signal is stronger that of influenza) and a second biannual one, 
exploited by influenza. These two cyclic behaviors are the root 
of the superinfection (ecological) mechanism for coexistence of 
both populations. 

Velasco-
Hernández 
et al 2015 
 

Review 2016 Pathogen interactions in the 
mucous layer of the 
respiratory tract are complex. 

Current understanding of respiratory mucus and its interactions 
with the respiratory pathogens Pseudomonas aeruginosa, 
respiratory syncytial virus and influenza viruses, with particular 
focus on influenza virus transmissibility and host-range 
specificity. The authors propose that respiratory mucus 
represents an understudied host-restriction factor for influenza 
virus. 

Zanin et al 
2016 

Patients with COPD aged 
40–85 years underwent 
sputum sampling for 
detection of bacteria and 
viruses.  

2017 Acute exacerbation of COPD 
etiology varies with season. 
Rises in incidence in winter 
may be driven by increased 
pathogen presence as well as 
an interaction between airway 
infection and effects of viral 
infection. 

The most common bacterial species were non-
typeable Haemophilus influenzae (NTHi) and Moraxella 
catarrhalis, most common virus was rhinovirus. Logistic 
regression analyses (culture bacterial detection) showed 
significant OR for Acute Exacerbation COPD occurrence 
when M. catarrhalis was detected regardless of season (5.09 
(95% CI 2.76 to 9.41)). When NTHi was detected, the increased 
risk of exacerbation was greater in high season (October–
March, OR 3.04 (1.80 to 5.13)) than low season (OR 1.22 (0.68 
to 2.22)). Bacterial and viral coinfection was more frequent at 
exacerbation (24.9%) than stable state (8.6%). A significant 
interaction was detected between NTHi and rhinovirus 
presence and exacerbation risk (OR 5.18 (1.92 to 13.99); 
p=0.031). 

Wilkinson et 
al 2017 
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Type of study Date  Findings Comments Authors 
Modelling of interaction 
between influenza and 
other pathogens 

2018 Models demonstrate potential 
outcomes from co-infection 
and competition 

Excellent review of studies identifying interactions between 
influenza and other pathogens. 

Opatowski et 
al 2018 
 

Data for44,230 cases of 
respiratory illness tested 
for 11 respiratory viruses 

2019 Strong statistical support for 
the existence of interactions 
among respiratory viruses. 

Computer simulations showed that very short-lived 
interferences may explain why common cold infections are less 
frequent during flu seasons. 

Nickbakhsh 
et al 2019 

In vitro and in vivo 
studies 

2019 Literature review plus in vitro 
and in vivo studies in a mouse 
model 

Direct interaction between influenza on the lung surface upon 
Gram-positive, S. pneumoniae and S. aureus, and Gram-
negative, Moraxella catarrhalis and non-typeable Haemophilus 
influenzae, bacterial colonizers and respiratory tract pathogens. 

Rowe et al 
2019. 
 

Vaccination of mice and 
studies using Madin–
Darby Canine Kidney 
(MDCK) monolayers 

2019 Influenza immunity is 
enhanced by co-vaccination 
with influenza and 
pneumococcal vaccines 

Mucosal co-administration of γ-Flu and γ-PN similarly augments 
influenza-specific immunity, particularly tissue-resident 
memory cell responses in the lung. In vitro analysis revealed 
that S. pneumoniae directly interacts with both γ-Flu and with 
live IAV, facilitating increased uptake by macrophages as well as 
increased infection of epithelial cells by IAV. These provide 
explanation for the synergistic pathogenicity of IAV and S. 
pneumoniae, and the prospect to develop better vaccine 
strategies for both pathogens. 

David et al 
2019 

Role of the nose/throat 
microbiome on 
susceptibility to influenza 
infection 

2019 Different bacterial community 
types were determined by 
swabs followed by PCR 
characterisation. 

Five bacterial community types were identified. The group 4 
was associated with a 70% lower risk of influenza infection. Two 
oligotypes, Alloprevotella sp. and Prevotella histicola / sp. / 
veroralis / fusca / scopos / melaninogenica, were positively 
associated with enhanced influenza virus infection. One 
oligotype, Bacteroides vulgatus was negatively associated with 
influenza virus infection.  

Lee et al 
2019 

Retrospective clinical 
study 

2020 Effect of prior infection with 
influenza on subsequent 
infection with COVID-19, and 
effect of coinfection with 
influenza and COVID-19 on 
ventilator use and mortality 

The risk of testing positive for COVID-19 was 68% lower among 
influenza positive cases. The coinfected had a risk of death 5.9-
times higher than among those with neither suggesting possible 
synergistic effects. The odds of ventilator use or death and ICU 
admission or death was greatest among coinfection patients 
showing strong evidence of an interaction effect compared to 
the viruses acting independently.  

Stowe et al 
2020 
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Type of study Date  Findings Comments Authors 
Competition between 
COVID-19 and other 
pathogens 

2020 Preliminary findings COVID-19 looks to have displaced influenza via competition. 
Rates of certain notifiable infectious diseases look to have 
dramatically reduced during the COVID-19 outbreak. 
Competition between viruses or by-product of infection 
control? 

WHO 2020c, 
Jones 2020d 

Regulation of the inflammatory response in the lung 
Population study 
investigating role of 
elevated inflammation 
marker CRP on 
susceptibility to infection 

2016 Individuals with high CRP at 
baseline were excluded in this 
prospective general 
population cohort and cross-
sectional general population 
study 

Those with CRP >3 mg/L at baseline had 1.2- and 1.7- times 
increased risk of infectious disease, compared with individuals 
with CRP <1 mg/L. Individuals in the highest CRP tertile 
(compared with the lowest) had an increased risk of bacterial 
diseases (hazard ratio 1.7, CI 1.6-1.8), but not viral, mycosis, 
and parasitic diseases. The increased risk was mainly carried by 
pneumonia, sepsis, and particularly gram-negative infections. 
None of the CRP genetic combinations examined conferred an 
increased risk of infectious disease. 

Zacho et al 
2016 

Review and results from 
a mouse study 

2020 The tightly regulated interplay 
between the gut microbiota 
and the host enables the 
establishment and persistence 
of immune homeostasis 

Sublethal infection with influenza alters the activity of gut 
microbiota, partly from reduced food intake. Fecal transfer 
shows that influenza-conditioned microbiota compromises lung 
defenses against pneumococcal infection. Reduced production 
of acetate affects the bactericidal activity of alveolar 
macrophages. Mice colonized with the IAV-conditioned 
microbiota display reduced bacterial loads after acetate 
treatment. In influenza infection, acetate supplementation 
reduces local and systemic bacterial loads via a FFAR2-
dependent mechanism. This reduces lung pathology and 
improved survival of double-infected mice. Pharmacological 
activation FFAR2 during influenza reduces bacterial 
superinfection. Changes in the gut microbiota following COVID-
19 infection have also been observed (Zuo et al 2020). 

Sencio et al 
2020 

Review of interaction 
between lung microbiota 
and lung epithelium 

2020 The molecular and cellular 
mechanisms shaping 
immunity in the lung.  

Loss of epithelial integrity after exposure to infection results in 
inflammation in susceptible individuals and lung disease. This 
seemingly explains why the elderly more susceptible to 
respiratory infections and subsequent adverse inflammation. 

Invernizzi et 
al 2020 
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A study in Spain of confirmed influenza hospital admissions (2010 to 2017) showed that of 8,985 patients 
those with influenza A(H1N1)pdm09 virus were significantly younger, more frequently had class III 
obesity, and had a higher risk for pneumonia or acute respiratory distress syndrome than patients infected 
with influenza A(H3N2) or B. Hospitalized patients with influenza A(H1N1)pdm09 also had a higher risk 
for intensive care unit admission and/or death, after adjusting for other factors (Delgado-Sanez et al 
2020). 
 
It is also known that influenza(s) kill people in three different ways. Based on autopsy studies it is 
estimated about one-third of people who die from flu-related causes die because the virus overwhelms 
the immune system; another third die from the immune response to secondary bacterial infections which 
take advantage of a taxed immune system, usually in the lungs; and the remaining third die due to the 
failure of one or more other organs induced by inflammation (Jabr F 2017). Refer to the study relating to 
PB1F2 inflammatory and noninflammatory proteins above. Such dysregulated inflammation is also a 
characteristic of severe COVID-19 disease (Gong et al 2020). 
 
Other common fatal respiratory infections 
 
While influenza causes a significant mortality burden there are other pathogens with the same or greater 
mortality. Respiratory Syncytial Virus (RSV) is a serious pathogen in the young and elderly. In one study of 
infants with severe lower respiratory tract infection (LRTI) some 66% were infected with RSV. Some 6% 
experienced respiratory failure or died with RSV. RSV LRTI accounted for 57% of fatal LRTI in infants 
(Geoghegan et al 2017). 
 
Acute respiratory infection (ARI), including pneumonia, constitutes a substantial disease burden in older 
adults ≥65 years. The Global Burden of Disease (GBS), Injuries, and Risk Factors Study 2015 estimated that 
lower respiratory infections have caused around 1.2 million deaths and 13.5 million disability-adjusted 
life-years in older adults. RSV is one of the important viral pathogens identified in older adults with ARI 
and is increasingly recognized as a cause of illness in high-risk adults, including those with chronic lung 
and heart disease. RSV infection occurs in 3%–7% of healthy older adults and in 4%–10% of high-risk 
adults. The hospitalization rate for RSV-ARI increases with age (Shi et al 2020). 
 
The Global Burden of Disease study 2015 estimated that for lower respiratory tract infections in older 
adults for every 100 influenza deaths there were 72 RSV deaths and 770 pneumococcal pneumonia deaths 
(GBD collaborators 2017). 
 
Influenza(s) cannot act in isolation 
 
The simple message given to the public to date regarding influenza is misleading. Table 1 gives an overview 
of studies conducted since 1996 which show that influenza(s) act in cooperation with other pathogens, 
the nose/throat microbiota, and the digestive microbiota. To say that influenza (alone) has killed someone 
is misleading. The poem “Who killed cock robin?” is a good allegory to this fact. 
 
Especially note the 2008 study of Brunstein et al (2008) which detailed previously unknown interactions 
between pathogens. The order in which a person is infected by different pathogens is also highlighted in 
Table 1. Another example is varying clinical severity due to the order of infection with Dengue and Zika 
viruses, and indeed with a different serotype of the same virus (Katzelnick et al 2020). Prior infection with 
tuberculosis increased influenza mortality in the 1918 pandemic (Noymer and Garenne 2000). This is 
called heterologous immunity and is far wider than just dengue and Zika (Kim and Shin 2019).  
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In conclusion, influenza(s) cannot and does not operate in splendid isolation, and indeed, neither does 
any other pathogen. A silo mentality focus on influenza is creating misleading expectations regarding the 
efficacy of influenza vaccination to tackle a far more complex problem. See Appendix 1 for wider 
discussion. 
 
Influenza(s), other infections, and spatial granularity 
 
The messages about influenza can give the impression that influenza is more universal than it ever could 
be. All infectious outbreaks show considerable spatiotemporal granularity (Balkan et al 2009, Fry et al 
2015, Chanlekha et al 2010, Elson et al 2020). Influenza is no exception (Skog et al 2014, Yang et al 2016, 
Charu et al 2017, Pei et al 2018). Spatiotemporal granularity means that the infection is worse in some 
areas than others, and that timing differences are also present. Granularity arises from the sum of chance 
events in the human introduction of different strains of influenza(s) and other pathogens into different 
communities and regions (Li et al 2020). 
 
Figure 1: COVID-19 and spatial granularity. Calculated excess mortality in US states during a 12-month 
period ending June 2020 when COVID-19 was circulating compared to the same period ending June 2019 
(National Centre for Health Statistics 2020). 
 

 
 
In a study of mortality risk due to heat and cold the highest risk groups were female sex, age 75+, and 
cities with higher urbanization rates (Chen et al 2018). All three and especially the latter confirms the 
observations made in Parts 1 and 2 of this series regarding transmission of infectious agents at high 
population density. Issues regarding cold are discussed in more detail in the section dealing with Excess 
Winter Mortality. 
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Table 1: Maximum value of the rolling EWM calculation in US states, and the month and year when 
this occurred. Winter 2007/08 to 2019/20 (National Centre for Health Statistics 2020) 
 

When EWM State When EWM State 
Mar-08 15.1% Michigan Jan-15 15.3% Alaska 
Mar-08 15.6% West Virginia Feb-15 15.4% New Hampshire 
Mar-08 15.9% Wisconsin Mar-15 14.8% Tennessee 
Mar-08 16.2% Connecticut Mar-15 15.2% USA 
Mar-08 16.6% Minnesota Mar-15 15.9% South Carolina 
Mar-08 17.1% Nevada Mar-15 16.4% Georgia 
Mar-08 17.2% Indiana Mar-15 16.5% Virginia 
Mar-08 17.2% Illinois Mar-15 17.0% Kentucky 
Mar-08 17.5% Ohio Mar-15 17.1% Alabama 
Mar-08 17.7% Arkansas Mar-15 17.2% Maryland 
Mar-08 18.7% Kansas Mar-15 17.4% North Carolina 
Mar-08 18.8% North Dakota Mar-15 18.9% Nebraska 
Mar-08 18.9% Oklahoma Mar-15 18.9% Delaware 
Mar-08 19.4% South Dakota Mar-15 19.3% Rhode Island 
Mar-08 19.6% New Mexico Apr-15 15.6% Vermont 
Mar-08 19.7% Iowa Apr-15 19.6% Massachusetts 
Mar-08 22.3% Missouri Mar-17 12.9% Idaho 
Apr-08 15.6% Colorado Mar-17 14.9% Montana 

Mar-09 12.3% Hawaii Mar-17 15.1% Oregon 
Jan-13 14.6% Wyoming Mar-17 18.3% Washington 

Mar-13 13.6% Utah Jan-18 14.6% Louisiana 
Mar-13 17.7% Pennsylvania Mar-18 12.1% Florida 
Mar-13 21.2% Maine Mar-18 16.0% Mississippi 

   Mar-18 16.6% Texas 

   Mar-18 17.4% Arizona 

   Mar-18 18.7% California 

   Jan-20 17.6% Washington DC 

   Mar-20 17.1% New Jersey 

   Mar-20 20.4% New York 
 
Figure 1 gives an example of spatiotemporal granularity in the spread of COVID-19 across the USA. 
Spatiotemporal spread was studied in detail in Part 1 using direct counts of COVID-19 attributed deaths. 
Figure 1 avoids the issues surrounding missed COVID-19 diagnosis in the early parts of the epidemic and 
the ambiguity of assigning the direct cause of death. It does this by looking at excess all-cause mortality. 
Hence the figure of 26% excess mortality for New York is the number of deaths in July 2019 to June 2020 
(with COVID-19 present) compared with the number of deaths in July 2018 to June 2019 (without COVID-
19). Alaska shows a slight negative excess mortality which may be due to small number uncertainty. One 
standard deviation of Poisson variation for Alaska is ± 0.4%. States to the far right of Figure 1 are those 
identified in Part 1 where COVID-19 infection was low by June of 2020 and contained only sporadic 
instances of COVID-19 reported deaths at county level. 
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Table 1 also addresses the issue of spatiotemporal granularity by looking at the date of the highest value 
of the rolling Excess Winter Mortality (EWM) calculation in each US state. EWM is described in more detail 
in the next section. Two clear clusters are evident in the winter of 2007/08 and that of 2014/15. Even 
within those clusters the EWM calculation reached its peak mainly in the four months ending March 2008 
but in April 2008 in Colorado. But across January, February, March and April in 2015. January dates also 
appear in the winters of 2012/13 2017/18 and 2019/20. 
 
Table 2: Maximum value of the rolling EWM calculation in Scottish and Northern Ireland local 
government areas, and the month and year when this occurred. Winter 2001/02 to 2019/20 
 

When EWM Location When EWM Location 
Feb-03 60% Orkney Islands Mar-16 34% East Dunbartonshire 
Jan-04 37% Ards Feb-17 35% Limavady 
Jan-04 68% Moyle Feb-17 40% Craigavon 
Mar-05 30% Midlothian Mar-17 25% Highland 
Apr-06 55% Shetland Islands Mar-17 46% Antrim 
Apr-07 38% Castlereagh Mar-17 47% Coleraine 
Feb-09 43% Fermanagh Mar-17 55% Omagh 
Mar-09 39% Clackmannanshire Jan-18 28% East Lothian 
Mar-10 38% Newry & Mourne Jan-18 30% North Lanarkshire 
Apr-10 31% Down Jan-18 32% North Ayrshire 
Mar-12 38% Armagh Jan-18 34% Argyll and Bute 
Mar-13 60% Banbridge Jan-18 35% West Lothian 
Apr-13 49% Ballymena Jan-18 35% Eilean Siar 
Jan-15 33% Derry Jan-18 46% Stirling 
Feb-15 61% Ballymoney Feb-18 28% Edinburgh City 
Mar-15 24% Glasgow City Feb-18 31% Renfrewshire 
Mar-15 27% Scotland Feb-18 34% East Ayrshire 
Mar-15 28% Aberdeenshire Feb-18 47% Newtownabbey 
Mar-15 31% South Lanarkshire Mar-18 28% Northern Ireland 
Mar-15 33% East Renfrewshire Mar-18 28% Belfast 
Mar-15 34% Dundee City Mar-18 29% Angus 
Mar-15 37% Perth and Kinross Mar-18 30% Dumfries + Galloway 
Mar-15 39% Moray Mar-18 33% Falkirk 
Mar-15 40% Lisburn Mar-18 35% South Ayrshire 
Apr-15 26% Fife Mar-18 36% Aberdeen City 
Apr-15 32% Inverclyde Mar-18 39% West Dunbartonshire 
Apr-15 53% Carrickfergus Mar-18 39% Scottish Borders 
Apr-15 87% Cookstown Mar-18 44% North Down 

      Mar-18 47% Larne 
      Apr-18 39% Dungannon 
      Apr-18 54% Magherafelt 
      Mar-19 57% Strabane 

 
The cluster in the winter of 2007/08 is due to an influenza outbreak and an extraordinarily strong La Nina 
event which mainly affected the West (Pacific) coast of the US with temperature and precipitation 
anomalies (L’Heureux 2008). Higher than usual deaths were reported by the CDC and influenza activity 
peaked in February. The CDC also reported that “the majority (66%) of influenza A (H1N1) viruses were 
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similar to the vaccine strain. However, 77% of influenza A (H3N2) and 98% of B viruses sent to CDC for 
further testing were not optimally matched to the 2007-2008 influenza vaccine strains” (CDC 2008). This 
poor matching between the vaccine and the circulating A (H3N2) and B strains probably accounted for the 
higher than usual deaths. See Appendix 1 for a wider discussion of influenza vaccine effectiveness. 
 
The cluster in 2015 is far more nuanced and appears to involve an unusually synchronised outbreak of the 
proposed new type or kind of disease. The winter of 2014/15 also involved unusually high temperatures 
on the US west (Pacific) coast and unusually low temperatures on the East (Atlantic) coast (Freedman 
2015). The 20.4% EWM for New York in March-20 is probably contaminated with unrecognized COVID-19 
deaths. 
 
By way of international comparison, Table 2 gives similar analysis for local government areas (LGA) in 
Scotland and Northern Ireland. As can be seen there is no cluster for the winter of 2007/08, however, 
there is a common cluster for the winter of 2014/15, plus a large cluster in the winter of 2017/18. The 
total for Scotland falls in the winter 2014/15 cluster while that for Northern Ireland in 2017/18. As in the 
US the maximum for the rolling EWM calculation can fall between January to April with the 2017/18 
cluster having an unusually large number of January and February occurrences (mostly from Scotland). 
Due to larger Poisson randomness associated with smaller numbers the maximum EWM in Scotland and 
Northern Ireland LGAs can be higher than for the larger US states. Although the UK is well recognised for 
its above average values of EWM – reasons unknown. Appendix 2 discusses the winter of 2014/15 in more 
detail. 
 
From a financial and capacity risk perspective, the spatiotemporal effects of infectious outbreaks should 
be clear. Given the unknown implications of many infectious events one could imagine the situation where 
hospital managers in Alaska, Hawaii and Montana (Figure 1) are muttering, “what is wrong with the rest 
of you, there are no cost and capacity issues here”. Not so amusing as it sounds since NHS managers in 
the UK are consistently blamed for all unexplained increases in cost and capacity variances as illustrated 
in Table 2. 
 
Hence, when outbreaks of a potential new type or kind of disease are discussed, evidence of 
spatiotemporal granularity must be consistent with that known to be associated with infectious outbreaks 
in general. 
 
Gender differences in deaths 
 
One study has demonstrated that the pattern of gender differences (male:female) for influenza and other 
acute upper respiratory infections from 1998/99 to 2002/03 varied from 1.05:1 to 2.0:1 between English 
local authorities (SEPHO 2005). This ratio seemed to increase from South (Cornwall and Devon) to North. 
Location seems to play a role. 
 
Figure 2 explores the trend in the proportion of total deaths and the percentage point difference between 
the genders for respiratory conditions (mainly infectious) plus infectious agents using ICD-10 chapters A, 
B and J. As can be seen there is an initial trend upward for these conditions as a proportion of total deaths 
(all-cause mortality), although the gender gap (dashed line) peaked in 2005. In 2012, the revised version 
of ICD-10 was implemented which shifted some deaths into Dementia as a primary cause although this 
did not seem to make a huge change in the trends. Subtle shifts in the gender ratio are occurring over 
time.  
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Figure 2: Proportion of total deaths due to respiratory conditions plus infections (ICD-10 chapters A, B, 
J) for male and females and the percentage point difference between the two 

 

The reader may wonder why there is no age standardized analysis in this series. The simple answer is that 
health care costs and capacity arise from the absolute numbers of admissions and deaths, not from age 
standardized rates. A role for Excess Winter Mortality (EWM) will now be explored. 
 
Excess Winter Mortality (EWM) 
 
Given the fact that deaths from a variety of conditions (especially cardiovascular and respiratory) peak in 
the winter (Rau et al 2018) it is useful to use a measure called Excess Winter Mortality (EWM) to study 
the combined effects of infectious agents in combination with associated metrological conditions. There 
are known metabolic and hormonal differences in the response to cold between men and women (Mengel 
et al 2020) and the neuroendocrine and immune response in men is greater than in women (Solianik et al 
2014). The higher immune response in men gives a possible clue to the generally higher female EWM. 
 
The EWM calculation usually compares the four winter months (December to March) with the eight non-
winter months. I have modified the EWM calculation to give a rolling calculation (Jones 2020c) which 
allows a more flexible calculation of when the peak in EWM occurred and an evaluation of the shape of 
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the rolling EWM curve. Figure A1.1 (Appendix 1) shows the maximum EWM in England and Wales for each 
winter from 1949/50 to 2019/20. The EWM calculation in 2019/20 ceased at March-20 to avoid 
contamination with the COVID-19 outbreak in April of that year. 
 
The 1962/63 peak in England & Wales (Appendix 1, Figure A1.1) is illustrative of the somewhat unusual 
conditions in that winter. Snow covered most of the UK for over two months from just before Christmas 
through to 4th March, and temperatures remained more than 5 C below average (Homewood 2014). This 
was at a time when thermal housing standards in the UK were low and most homes were heated by coal 
fires, leading to pollution (Scott et al 1964).  
 
Figure 3: A variable year to year gender gap in the EWM in England and Wales 
 

 

Figure 3 explores this gap between male and female deaths in greater detail. As can be seen the gap 
between male and female EWM is highly variable. Known influenza years are associated with higher 
female deaths. The reason for the underlying trend (dotted line) is unknown. Equally mysterious are the 
winters when the gap between male and female is exceptionally low, i.e., 1953/54, 1994/95 and 2013/14. 
 
The fact that the 1962/63 peak is not far higher is largely because low temperature is generally not as 
great a source of excess deaths compared to high temperatures (Ekamper et al 2009), however, the 
prolonged duration of cold would have meant that many elderly people would have died from pneumonia. 
There were 10.1% excess female deaths aged 75+ compared to 5.4% excess male deaths (authors 
calculation). Part 2 has already given evidence for similar volatility in different specialties and conditions. 
A general excess of female EWM has also been noted in New Zealand (Davie et al 2007).  
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Bacterial and viral pneumonia in English hospital admissions were tested for a relationship with the 
difference between female and male EWM. This was done using the English Hospital Statistics (HES) data 
tabulations. Prior to 2008/09 insufficient data was coded to enable differentiation, however, Figure 3 
shows a potential relationship between viral pneumonia (which includes influenza) and the year-to-year 
change in the difference between female and male EWM. As can be seen a change to higher excess female 
EWM is associated with a change to a higher proportion of female admissions. 
 
Figure 4: Relationship between the year-on-year change in the gender ratio associated with EWM and 
the gender ratio associated with viral lung infection 

 
The gender ratio for deaths (as EWM) is more sensitive than the change in proportion female admissions. 
Attempting to force the regression through the origin gives a parallel line below the trend shown in Figure 
4. 
 
By way of contrast, bacterial pneumonia shows no correlation. Both bacterial and viral pneumonia 
admissions do however show a slight trend upward in the gender ratio over time which adds around 0.5% 
per annum to the proportion female viral pneumonia ratio (49.5% rising to 54.5%, 2008/09 to 2019/20), 
and around 0.2% per annum to that for bacterial pneumonia (44.5% rising to 47%). 
 
It is therefore proposed that the gap between male and female EWM is a complex mix of temperature 
and viral infections (Influenza, RSV, etc). This confirms the importance of the trends in gender ratio for 
admissions reported in Part 2. 
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Regional variation in EWM 
 
If a series of largely undocumented infectious events were to be travelling throughout the UK, then there 
should be regional patterns behind the rolling EWM calculation (Figure 5).  
 
Figure 5: The UK value and the standard deviation (STDEV) for a rolling weekly EWM calculation (17 vs 
35 weeks) for the nine regions of England, plus Northern Ireland, Scotland, and Wales 

 
 
On this occasion, weekly data has been used to construct a rolling 17-week versus 35-week EWM 
calculation. A each point the EWM for the UK is calculated as is the associated standard deviation across 
the regions. The nine English regions are roughly similar size to the other three countries in the Union. 
London is a single region. Especially note that the outbreak of COVID-19 at around the week ending 20th 
March sets a precedent for how an infectious outbreak may affect the shape of the EWM line plus alter 
the STDEV across the regions. The spread of COVID-19 was highly regional depending on the number of 
large cities in each region and associated population density. Hence, the shape of a usual EWM pattern is 
significantly interrupted at the week ending 3rd April as the epidemic sweeps across the UK. The large 
STDEV between regions illustrates both the timing and magnitude of local outbreaks (spatiotemporal 
granularity) across each region. After the peak of the COVID-19 epidemic the EWM calculation shows a 
compensating dip since thousands of deaths had been moved forward in time. A compensating dip is also 
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seen after the winters of 2014/15 and 2017/18. The dip after the winters of 2013/14 and 2018/19 is less 
than usual as fewer deaths have occurred over the winter and then occur in the following summer. 
The inflection in the STDEV line in Figure 5 on the 14th of August reflects the point when local infections 
and deaths begin to rise again after a national lockdown was relaxed. Given this basis, then note the shape 
and size of various other infectious events, some of which can occur in the summer months. The point of 
minimum STDEV between the regions (0.66%) occurs at the 17-week period ending 23rd November 2018. 
Prior to COVID-19 the point of maximum STDEV (3.72%) occurs on 1st June 2018. To suggest that influenza 
is the sole cause of all this diversity is a serious exaggeration. 
 
Note that influenza activity and mortality drop to a 100 year low in early 2000 (WHO 2020, Jones 2020), 
counterintuitively the proportion of total deaths due to lung disease and other infections and the excess 
of female deaths then climbs to a maximum. 
 
Having established the principle that winter mortality is far more nuanced that just influenza, and that 
amid all the uncertainty around influenza mortality, there is room for alternate explanations for some of 
the mortality. We can now discuss if any evidence exists for outbreaks of a new type or kind of infectious 
disease. 
 
A new type or kind of infectious outbreak 
 
In the early 1990’s I commenced working at the Royal Berkshire and Battle Hospitals NHS Trust as Assistant 
Director of Information. All was going well until precisely in the middle of March 1993 medical admissions 
at the hospital suddenly shifted up by 15%. The West Berkshire Health Authority accused the hospital of 
admitting more patients to get more income. This was entirely untrue; in fact, nothing had changed other 
than the sudden appearance of medical patients. Appendix 3 discusses if these shift-up events are as 
sudden as seemingly implied by this paragraph. The simple answer is no. 
 
What the hospital or the Health Authority did not know was that a similar happening had swept across 
the entire UK. Doctors were mystified and wrote letter to the editor of the British Medical Journal as they 
attempted to grapple with possible reasons. I was asked to investigate and started to notice curious 
male/female differences and even diagnosis and age specificity. I concluded that the only explanation was 
a new type or kind of infectious disease. These sudden changes in medical admissions and deaths have 
continued at regular intervals since 1993 and have been covered by ongoing reviews (Jones 2010a-c, 
2013a-c, 2014, 2015a-c, 2016a-d, 2017, Jones and Goldeck 2014). 
 
The key features of each outbreak are: 
 

1. A simultaneous jump in both deaths and volume of total medical admissions. 
2. The jump in deaths lags that for admissions by around one to two months, i.e., illness 

precedes ultimate death. 
3. However, some medical conditions are unaffected, and others decrease 
4. Males and females appear to act as separate compartments and can initiate shift-up 

either before or after each other. 
5. Attendances at the emergency department jump. 
6. Sickness absence among NHS workers jumps. 
7. The gender ratio at birth shows a wobble some nine months after the event. 
8. General practitioner referrals for an outpatient appointment also jump. 
9. NHS finances suddenly shift into overspend. 
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The order of events seems to be, first the female foetus is spontaneously aborted leading to a higher male 
gender ratio at birth, medical admissions increase, staff sickness absence increases and finally deaths 
increase. 
 
Alas, since no one has an explanation these events just get ignored (cognitive dissonance), even though 
they show all the spatiotemporal patterns expected of an infectious event and occur more widely around 
the world including the USA. Politicians in the UK seem to take the view that this is just another example 
that the NHS is inefficient, and therefore needs more policy intervention to correct these perceived 
problems. A full list of studies is available via the link in the suggested reading at the end of this study. 
 
Having establish that something of a highly peculiar nature keeps occurring I will now demonstrate how 
these events disturb the trends in deaths. The effect on hospital admissions has been characterised in 
several detailed studies (see suggested reading at the end of the study). This section will commence by a 
demonstration of curious shifts in the profile of EWM. 
 
Figure 6 takes the rolling EWM calculation and applies it to a time series of daily deaths in England and 
Wales between 1989 and 2000. Data was obtained from the Office of National Statistics by special request. 
This period has been chosen simply because it represents a period over which deaths were relatively 
constant, and beyond 2000 deaths experience a decline due mainly to improvements in life expectancy.  
 
Figure 6: A rolling EWM calculation (122 days versus 243 days) using daily deaths in England and Wales, 
1989 to 2000 

 

Rather than four months versus eight months the daily calculation uses 122 days versus 243 days. The 
shape of the resulting pattern is roughly similar but on some years the peak is wider than others, while 
differences in the shape (skewing) around the maximum can also be discerned. As can be seen in Figure 
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6, the point of excess mortality is variable and occurs at the 122 days ending in late February for 1993/94 
through to April for 1992/93. The Office for National Statistics have concluded that EWM is not strongly 
related to average winter temperature (ONS ???) which leaves the timing and extent of infectious 
outbreaks to explain the observed variability. Clearly, influenza will be involved in some of the higher 
peaks, however, as pointed out earlier even influenza does not act in splendid isolation. 
 
The 1998/99 and 1999/00 patterns represent the last large influenza outbreaks at the close of the 20th 
Century (Whiting et al 1999). The shape across the girth is narrow. The 1989/90 profile was due to another 
large influenza outbreak which commenced earlier than the winter of 1999/00. 
 
Especially note the 1992/93 and 1993/94 patterns. The 1992/93 pattern is reasonably average up to the 
beginning of March 1993 when the curve is suddenly pushed upward and to the right. This corresponds 
to the large increase in medical admissions observed at the hospital in Berkshire in mid-March of 1993. 
What could have caused this unique pattern? Appendix 3 gives an example of how a 5% shift-up in deaths 
will affect EWM depending on the time the shift-up commences and that a shift-up can indeed push the 
maximum EWM to the right. 
 
Figure 7: Month in which deaths underwent shift-up during spread of a new type or kind of disease 
among US states in 20913 and 2014 
 

 
 
Spread of the new disease among US states in 2014 
 
The spread of a potential new disease will now be illustrated using monthly data from the USA for an 
outbreak in 2014 and data from the UK for an outbreak in 2019 prior to the arrival of COVID-19. Recall 
that the new disease causes a sudden shift-up in both admissions and deaths which endures over time.  
 
This shift-up is best characterised using a rolling 12-month total of deaths where a sudden (step-like) shift-
up in the level of deaths shows up as a ramp in the rolling 12-month total. An influenza (spike) event does 
not create a ramp in the rolling 12-month total but instead creates a tabletop shaped feature. Figure 7 
determines at which month this sudden shift-up in deaths occurs for US states. As can be seen there is 
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sporadic initiation in four states prior to February 2014. Some 33 states initiate this novel outbreak during 
March to May and the remainder initiate through to December of 2014. 
 
Figure 8: Effect of size (as number of deaths) on the apparent magnitude of the shift-up in deaths during 
the 2013-2014 spread of the new type or kind of disease 

 
 
Figure 9: Effect of initiation date of the shift-up in deaths on the size-adjusted magnitude of the shift-
up. All states adjusted to the same size as Hawaii (roughly 10,000 deaths) 

 
Figure 8 shows the effect of size (as total deaths per state) on the apparent magnitude of the step-like 
sudden shift to higher deaths. In the smaller states the shift is highest since spread of the agent will mostly 
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occur in the capital city. Larger states have multiple large cities or multiple suburbs which blunts the 
apparent maximum due to spatiotemporal effects. The line showing 6-times the standard deviation from 
Poisson chance is designed to assure that whatever has happened cannot occur from chance. 
 
Lastly, Figure 9 shows that the magnitude of the sudden shift may increase to a maximum for initiation 
between May to July. All states were adjusted to the same size as Hawaii using the Poisson relationship. 
The key point in this section is high spatiotemporal granularity as expected from an infectious outbreak. 
 
Spread of the new disease in the UK during 2019 
 
As has been previously discussed a rolling 12-month total is an excellent method for detecting unexpected 
Shift-up and Shift-down hidden in a data series. Such sudden shifts are often concealed by both the 
statistical scatter in the smaller monthly numbers and the seasonal patterns. The rolling 12-month total 
removes most of the underlying seasonal pattern and greatly diminishes the scatter associated with the 
smaller monthly numbers. 
 
Figure 10 shows a typical shift-down and shift-up pattern for the Vale of Glamorgan in Wales. Even at 
1,300 deaths ± 1 standard deviation is around ± 36, hence the scatter around the trend lines. The slope of 
the lines measures the magnitude of shift-down (-9.0 per month) and shift-up (+11.9 per month). Shift-up 
commences in month 15 (August 2019). COVID-19 excess deaths commence in April 2019.  
 
Figure 10: Example of shift-down followed by shift-up using a rolling 12-month total in the Vale of 
Glamorgan, Wales 
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Figure 11: Timing for Shift-up (where it occurs) in different areas (local authority, county, STP Footprint 
and Region/Country) during 2019 
 

 
 
The exact magnitude of COVID-19 excess deaths is relative to the shift-up trend line and has a degree of 
uncertainty. Due to the spread of COVID-19 throughout the UK excess deaths commence in March in 
larger cities and then in April in other local authorities such as Vale of Glamorgan, and to an almost 
negligible extent in some locations. 
 
It is important to demonstrate that shift-up shows typical infectious spread and the timing of Shift-up 
across the UK during late 2018 and 2019 is demonstrated in Figure 11.   
 
As can be seen, Shift-up commences first in Scotland with half of local authorities having commenced 
Shift-up by May-19, next comes England and Wales with half of local authorities commencing by Aug-19 
and then London with half by Sep-19. London catches up with the rest of the UK with a late rush of 
initiation in October and November.  
 
Clearly the Vale of Glamorgan (Fig. 10) is a simple example where the bulk of the population experienced 
Shift-up at roughly the same time, however, in larger areas with multiple population loci and/or distinct 
social groups shift-up can occur at different times leading to a bi-phasic time response.  
 
As with all infectious events, both COVID-19 and the 2019 shift-up preceding COVID-19 show differences 
in magnitude across the UK. See Appendix 3 for a wider discussion.  
 
The key point is that shift-up and shift-down are very real and have the potential to significantly influence 
the calculation of ‘excess’ deaths. 
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It should be noted that overall, some 16% of areas were in shift-down prior to COVID-19, of this average 
10% in Scotland, 15% in Outer London, 21% in Inner London and 23% in Wales. 
 
Finally, Figure 12 investigates the possibility that shift-up and shift-down influence the magnitude of the 
ensuing COVID-19 outbreak. 
 
Figure 12: Excess deaths (all-cause mortality) during COVID-19 in areas either experiencing shift-up or 
shift-down at the time of the COVID-19 outbreak 

 
 
Clearly this is a complex issue which depends on original exposure to COVID-19 and rate of spread, 
however, there is tentative evidence to suggest that it is possibly shift-down which results in highest 
COVID-19 mortality with a median of 9.5% excess deaths compared to 7.9% for the shift-up group. These 
are clearly preliminary results. The original hypothesis that shift-up and shift-down involves some subtle 
form of immune shift may still apply. 
 
Cost implications of infectious outbreaks 
 
In the USA, the estimated average annual total economic burden of influenza to the healthcare system 
and society was $11.2 billion ($6.3-$25.3 billion). Direct medical costs were estimated to be $3.2 billion 
($1.5-$11.7 billion) and indirect costs $8.0 billion ($4.8-$13.6 billion). This is around $34 per person per 
year or $4,600 per all-cause death (Putri et al 2018). 
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Average cost per influenza admission in Canada was $14 612 CAD, including $133 for medical care prior 
to admission, $14 031 during initial hospital stay, and $447 post-discharge, including readmission within 
30 days. Some 14% of patients were admitted to intensive care (Ng et al 2018).  
 
Cancer patients with a concomitant diagnosis of influenza (0.4% of cancer-related hospitalizations) had a 
30% higher mortality rate, 0.7-day higher average length of stay, a higher incidence of complications 
including pneumonia, neutropenia, sepsis and acute kidney injury. Older age, no insurance (an indicator 
of low income), more comorbidities, lung cancer and haematological malignancy were independently 
associated with higher mortality (Li et al 2020). 
 
The economic burden of the entire infectious spectrum will be many times higher than this. A study into 
the inpatient costs associated with outbreaks of the new type or kind of disease in England gave around 
£700 million (around £840 million in 2020 costs) extra costs during each outbreak (Jones 2012). This cost 
is around £16 or £1,70 per all-cause death. The cost will include those associated with higher EWM during 
the outbreaks. 
 
Discussion 
 
It is often the ‘experts’ who are the last to accept the shift to a new paradigm (Greenwood 2019). Indeed 
as ‘everybody knows’ hospital LOS is a measure of efficiency/inefficiency and staff sickness absence rates 
are the responsibility of the employer. Among government agencies and politicians in the UK there is a 
presupposition that periods of poor financial or operational performance are the direct result of poor 
management or the inability to manage demand. 
 
This study has sought to give a biological and medical basis for winter mortality as the combined 
interaction between existing (persistent) pathogens, the nose/throat microbiome, the gut microbiome, 
and the prevailing mix of winter pathogens. Influenza is an important winter pathogen, but its effects 
cannot be separated completely from the complex set of interactions between pathogens and from the 
effects of heterologous immunity, i.e., the unexpected effects arising from the order in which infections 
are acquired. Indeed, vaccination itself becomes part of the sequence of heterologous immunity. 
 
Irrespective of these issues, the confusion arising from multiple influenza(s), vaccine effectiveness and 
actual influenza mortality has almost certainly deflected attention away from the curious behaviour of 
deaths which is seen around the world. 
 
Outbreaks of the new disease only serve to increase the resulting cost and capacity uncertainty in health 
care. Both the financial and acute hospital sector need to be aware that cost and capacity planning is less 
certain than probably assumed. The issues surrounding the Health Insurance Underwriting Cycle raised in 
Part 1 are a testament to this uncertainty. 
 
All uncertainty implies a safety margin. In finance this implies a surplus to cover for times of higher-than-
expected costs while in hospital capacity this implies flexible design to enable beds to be bought onstream 
as need requires. 
 
Further research 
 
The rolling 12-month total method has its limitations. The key is to use tools such as Fourier transforms, 
wavelet analysis, autoregressive integrated moving average (ARIMA) models, etc which look for the 



 

28 

variety of hidden patterns lying in the cost, admission, and bed occupancy data. ARIMA models have the 
advantage in that they anticipate that shift-up and down behaviour is part of the time series. 
 
Wider implications 
 
This study has far wider implications to those countries which use a funding formula to allocate health 
care budgets to different states, health authorities or clinical commissioning groups (CCG). See Part 4 for 
further discussion. Such formula has the implicit assumption that financial risk is not area dependant. This 
series has amply demonstrated that this is entirely untrue. For whatever reason some areas, i.e., large 
cities, experience higher infectious volatility which is further modified by metrological variables such as 
humidity and temperature. Both factors affect the survival and infectious capacity of respiratory 
pathogens. Clearly non-respiratory pathogens are also involved; however, winter is a time of high 
volatility. 
 
Conclusions 
 
There is no doubt that the silo mentality of Public Health Agencies has led to undue focus on influenza. 
We need to broaden our view of how infection works to craft a wholistic view of immune function and 
the wider role of the biome in both the nose/throat and digestive system. The health services can take 
wider steps to mitigate the intrinsic high volatility in costs and capacity challenges. In both cases targeted 
government policy is required. 
 
Data Sources and methods 
 
Data sources 
 
Monthly deaths in US states were obtained from the National Centre for Health Statistics (2020). HES 
inpatient admissions in England 1998/99 to 2019/20 were obtained from NHS Digital (2020a). NHS staff 
sickness rates was also from NHS Digital (2020b). 
 
Monthly deaths in Scotland were from National Records of Scotland (2020), and for Northern Ireland were 
by request from the Northern Ireland Statistics and Research Agency. Weekly deaths were from the office 
of national Statistics (2020), National records of Scotland (2020) and Northern Ireland Statistics and 
Research Agency (2020). 
 
Weekly Influenza-like-illness rates and deaths in England and Wales were from the Office for National 
Statistics (2019). 
 
Methods 
 
Excess Winter Mortality (EWM) was calculated as a rolling percentage difference of eight months versus 
four months. Hence percentage difference between average deaths September to December versus 
average deaths January to August. Move forward one month and recalculate. The maximum for the rolling 
EWM calculation usually occurs in the four months ending March, however this calculation can peak 
between the four months ending February to the four months ending April. The maximum was chosen for 
each winter. The standard deviation (STDEV) of EWM was adjusted for local authority size by plotting the 
STDEV versus average deaths (2001 to 2020) and a power law line of best fit calculated. STDEV was 
adjusted to the equivalent of 1,000 deaths per annum. 
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The year-to-year difference in total deaths was calculated by constructing a rolling 12-month total of 
deaths commencing the 12-months ending December 2001. This was compared to the 12-months ending 
December 2002 as the absolute value of the difference calculated as a standard deviation equivalent 
assuming Poisson statistics for whole numbers. Hence difference divided by the square root of the average 
deaths in year n and n+1. Move forward one month and recalculate. This transformation is required to 
adjust for the effect of size. The standard deviation of the transformed differences was then calculated. 
Analysis of monthly sickness absence rates in NHS Regions was conducted in the same manner. 
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Healthcare Analysis & Forecasting 
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Further Reading 
Further studies relating to factors affecting financial and operational risk in healthcare, and studies on 
outbreaks of the new disease can be found at http://www.hcaf.biz/2010/Publications_Full.pdf  
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Appendix 1: Controversies in influenza mortality and vaccination 
 
As I was conducting the analysis supporting this part of the series, it became increasingly apparent that 
the simple messages given to the public were sometimes inconsistent with the data. I am not the first to 
reach this conclusion, and the seminal paper by Peter Doshi published in 2008 on “Trends in recorded 
influenza mortality” (Doshi 2008) gives a compelling summary of the evidence as does the paper by 
Cannell et al (2008) on the potential role of vitamin D on nine conundrums in influenza epidemiology. 
Peter Doshi has also suggested that a silo mentality focus on influenza has led to the situation that 
vaccination is being taken far beyond the point of economic benefit (Doshi 2013). 
 
This section will attempt to give an overview of the controversies surrounding influenza mortality and 
vaccination. 
 
Why did EWM decline to the mid-1990’s and then stop declining? 
 
Figure A1.1 gives the trend in EWM in England and Wales over the period 1950/51 to 2019/20. The EWM 
for 2019/20 is in March just before COVID-19 deaths started to rise in April-20. Clearly seen is a trend 
down through to the mid-1990’s after which EWM reaches an asymptote – although it is possible that the 
asymptote was reached in the early 1980’s. In New Zealand from 1980–2000 no decline in seasonal 
mortality was also observed (Davie et al 2007). My own analysis of data for Germany shows no decline in 
EWM after the winter of 1969/70. 
 
Figure A1.1: Maximum winter EWM in England and Wales from the winter of 1950/51 to that of 2019/20 
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In theory, EWM should have continued to decline for three reasons: 
 

1. Thermal insulation standards in housing have progressively improved over time 
2. Global warming means that the winters have become progressively milder 
3. Influenza vaccination rates have improved over this period 

 
If influenza vaccination is as effective against influenza mortality as the public have been led to believe 
then EWM should have progressively fallen after the mid-1990’s. A similar study in New Zealand between 
1980 and 2000 showed that no decline in seasonal mortality was evident over the two decades (Davie et 
al 2007), i.e., the decline was not country specific. 
 
In England and Wales EWM rises in a near linear manner with age above 74 years, with slightly higher 
slope in females. In males from an average of around 14% EWM at age below 75 to 29% age 90+ (in both 
England and Wales, and in females from around 15% age below 75 to 33% age 90+ in England to 37% in 
Wales (ONS 2020). Recall that age is also a proxy for the NTD effect. The ageing population would act to 
slightly elevate EWM over time, however, influenza vaccination has increased markedly since the mid-
1990’s and is around 75% for older people (Jorgensen et al 2018). 

Interestingly, the study of Fireman et al (2009) could only demonstrate a 4.6% reduction in mortality 
among the vaccinated elderly (age 65+) over nine consecutive flu seasons. See section below regarding 
the different measures of vaccine effectiveness. 
 
Uncertain estimates of influenza morbidity and mortality 
 
An Australian study which used record linkage between multiple health care databases concluded “Among 
death registrations, hospital admissions and ED presentations with influenza recorded as a cause of illness, 
15%, 28% and 1.4%, respectively, also had laboratory notified influenza. Time trends in counts of influenza 
recorded on the ED, admission and death databases reflected the trend in counts of virologically 
diagnosed influenza. A minority of the death, hospital admission and ED records for persons with a 
virologically diagnosed influenza infection identified influenza as a cause of illness. Few database records 
with influenza recorded as a cause had laboratory confirmation. The databases have limited value for 
estimating incidence of influenza outcomes but can be used for monitoring variation in incidence over 
time” (Muscatello et al 2014). 
 
A Canadian study into the costs of influenza admissions conducted over a three-year period including 41 
hospitals could only muster data for 2,943 laboratory confirmed admissions (Ng et al 2017). The problem 
is that laboratory confirmed influenza is not considered necessary except perhaps in the intensive care 
unit. 
 
Counting and coding of influenza deaths in the UK have improved from 2018 onward. For example, the 
number of persons coded as having a confirmed or possible death from influenza (ICD-10 J09 to J12) in 
England & Wales have been low, hence in 2015 (331), 2016 (388), 2017 (297), 2018 (1,664), 2019 (1,290). 
This total includes J12 which covers viral pneumonia. These can be considered as lower respiratory tract 
attributable deaths (Office for National Statistics 2020d).  
 
All Public Health Agencies must then estimate what they believe to be the deaths attributable to influenza.  
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As has been shown above, no one directly counts the number of influenza admissions or deaths and these 
must be inferred as ‘influenza-associated’ (Nicoll et al 2012). Clearly such inference is open to 
methodological problems and hidden bias (Schanzer et al 2008, Thompson et al 2009, Nicholl et al 2012). 
In their review of 103 estimates of influenza mortality Li et al (2018) concluded, “No ‘average’ estimate of 
excess mortality could reliably be made due to substantial variability of the estimates partly attributable 
to methodological differences in the studies”.  
 
To do this an estimate of lower respiratory tract infections (LRTI) incidence, hospitalizations and deaths 
are constructed of which a proportion is attributed to influenza (see GBD Influenza collaborators 2018). 
Hence for 2017, an estimated 145,000 (UI 99,000 – 200,000) LRTI influenza deaths occurred around the 
world. Mortality is highest among adults aged 70+. Around 11.5% (UI 10% - 12.9%) of LRTI admissions 
were estimated to be due to influenza. Hence in 2017 influenza accounted for roughly 0.3% of global 
deaths. Applied to England & Wales this gives around 1,300 deaths which is close to the figures in 2018 
and 2019 (above) after counting and coding of influenza improved.  
 
Public Health England estimate around 17,000 (Williams 2020) which is about 10-times higher 
(approximately 3% of deaths in England). One study showed that the highest years for potentially 
attributable influenza deaths in England were 2008/09 and 2014/15, with 26, 542 excess mortality for 
2014/15 for those aged 65+ (Pebody et al 2018) – which was assumed to be 100% attributable to influenza. 
This study failed to mention the potential contribution from negative vaccine effectiveness specific to the 
2014/15 season – see Appendix 2. 
 
The real figure is probably somewhere in between the two extremes and closer to the more robust GBD 
Influenza collaborators (2018) estimate. Is Public Health England erring toward exaggerating influenza 
mortality to maintain public compliance with the remarkably high influenza vaccination rates in the UK 
(OECD Data 2020). Indeed, since the UK has the second highest influenza vaccination rate in the world 
(Korea has the highest), why so many estimated influenza deaths in England? 
 
Issues around influenza vaccine effectiveness will now be discussed. 
 
What does influenza vaccine effectiveness (VE) measure? 
 
It is not widely appreciated that three different types of vaccine effectiveness measures exist: 
 

1. Against rates of influenza like illness (ILI) determined by GP consultation rates (most 
common) 

2. Against rates of hospital admission (less common) 
3. Against deaths (least common) 

 
As with all methods, different types of bias have been noted (Jackson et al 2006, Fireman et al 2009, 
Castilla et al 2015; Lipsitch et al 2016, Ainslie et al 2017, 2018, 2019, De Smedt et al 2018, Butler et al 
2019). However, the key issue is whether the different methods of VE measure different aspects of the 
effects of vaccination in different groups of people. Hence caution is warranted when attempting to apply 
VE from GP consultation rates to VE for death. 
 
As can be seen in Figure A1.2, the VE for #1 above varies greatly from year to year. Recall that the all-age 
VE is generally higher than VE in the 65+ age group. Potential bias is because persons who have died or 
been hospitalized are excluded as are persons who cannot afford a GP visit. See Appendix 2 for a detailed 
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examination of potential adverse consequences of negative VE in the 2014/15 winter upon mortality in 
the elderly. 
 
Figure A1.2: Overall vaccine effectiveness (all-ages) against GP consultation for influenza like illness (ILI) 
in the USA (source CDC 2020) 
 

 
 
The common immune modifying virus, cytomegalovirus (CMV), is known to have profound effects on 
influenza vaccine effectiveness – especially in the elderly, but this is ignored as a confounding factor in 
most VE studies (Jones 2016d). This is especially relevant given that individuals not infected by this virus 
typically live longer. 
 
A study of vaccination and prevention of hospitalization for the seasons 2010/11 to 2014/15 for those 
aged 65+ gave 37% VE overall. For influenza A(H3N2) VE was 43% in the years when there was a good 
antigenic match and 14% in the seasons when there was a poor antigenic match (Rondy et al 2017). 
 
A recent study in the UK concluded that there was little evidence to suggest that influenza vaccination in 
the elderly reduced rates of hospitalization or death (Anderson et al 2020). However, a study in Taiwan of 
the frail elderly observed an 8% reduction in hospitalization and a 45% reduction in mortality (Lee et al 
2014). A review of published studies by Cheng et al (2020) showed that “the pooled adjusted relative risks 
among influenza-vaccinated people relative to unvaccinated people were 0.74 (95 % confidence interval 
[CI] = 0.70-0.78) for cardiovascular diseases (63 studies), 0.82 (95 % CI = 0.75-0.91) for respiratory diseases 
(29 studies), and 0.57 (95 % CI = 0.51-0.63) for all-cause mortality (43 studies)”.  
 
Another study for community dwelling elderly (those least likely to be in the last year of life) for the 
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influenza or pneumonia and a 48% reduction in the risk of death (Nichol et al 2007). For hospitalization, 
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the exception was for 1993/94 when VE was zero, although VE for death for this winter was supposedly 
over 40%. The trend over time for VE for hospitalization and death likewise did not match. The protective 
effect against death reached between 60% to 70% for the 1996/97 season when only a 20% to 40% effect 
against admission was inferred. Something peculiar is happening in the VE estimates. The protective effect 
against mortality in these studies seems somewhat too good to be true. 
 
Indeed, does apparent influenza VE vary with the mix of pathogens each winter, and a complex pecking 
order of competition between pathogens, as implied for COVID-19 against influenza?  
 
Joint vaccination against pneumococcus and influenza 
 
There is overwhelming evidence that joint vaccination against pneumococcus and influenza gives lower 
pneumonia rates and all-cause mortality than vaccination in one without the other. These results are 
applicable to both the elderly and patients undergoing dialysis, both of which are examples of a weakened 
immune response (Zhang et al 2016, Yin et al 2018, Mo et al 2020). 
 
Rates of Pneumococcal Polysaccharide Vaccine (PPV) uptake in England are around 69% in those aged 65+ 
and 82% for those aged 85+ (Public Health England 2019). 
 
Influenza vaccine adverse reactions and other risks 
 
One modelling study has suggested that repeated vaccination of children increases the risk of influenza in 
old age by a factor of 2.4-times (Carrat et al 2005). The accuracy of this forecast will alas, not be known 
for another 50 years. 
 
The state of Victoria in Australia monitors adverse reactions to influenza vaccination. In particular, the 
2015 vaccination season (corresponding to 2015/16 in the Northern hemisphere) saw a doubling in the 
rate of allergy-related reactions from 12% in 2014 to 25% in 2015 (Clothier et al 2017). While the clinical 
severity of these reactions was judged to alter the vaccination program risk benefit, it does suggest that 
a surprising high proportion of people do suffer allergy (immune) reactions. In relation to the male/female 
differences noted in this series females are known to have higher proportions of adverse reactions to 
influenza vaccination (Denly 2020). 
 
Periods when respiratory hospitalisation and death are far higher than levels of influenza-like-illness 
(ILI) 
 
A study in the Netherlands between 1999 and 2005 identified that hospitalisation and deaths in the winter 
of 2003/04 was far higher than levels of ILI (van den Wijngaard et al 2010). Data from England and Wales 
is given in Figures A1.3a and A1.3b where there is extremely high scatter in the relationship between ILI 
rates and weekly deaths.  
 
Note that 2009 was during the Swine-flu (A(H1N1) epidemic where deaths in the elderly were extremely 
rare due to prior exposure to an antigenically similar strain circulating before 1957 (Jacobs et al 2012). 
 
Given that most deaths occur in the age 75+ band it would seem sensible to report ILI rates broken down 
for children age 0-15, then age 16-74 and age 75+. There is little point in having a misleading statistic 
covering all ages. 
 



 

45 

Figure A1.3a: Relationship between weekly influenza-like-illness (ILI) rates and deaths per week 
(adjusted for the trend over time using a 2nd order polynomial), Wales 1999 to 2019 

 

Figure A1.3b: Relationship between weekly influenza-like-illness (ILI) rates and deaths per week 
(adjusted for the trend over time using a 2nd order polynomial), England 2004 to 2019 
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Roles for Vitamin D 
 
In temperate latitudes even pandemic influenzas often show a clear seasonality. The data support the 
hypothesis that high levels of UVB radiation (vitamin D level), as occur in the summer, act in a protective 
manner with respect to influenza (Juzeniene et al 2010). Cannell et al (2008) suggest that the role of 
vitamin D in immune regulation explains the nine conundrums seen in influenza epidemiology. 
 
The immune protective and anti-inflammatory roles of vitamin D are widely recognised (Aranow 2011, 
Meehan and Penckofer 2014, Baggerly et al 2015). Vitamin D supplementation in deficient elderly persons 
promotes a higher TGFβ plasma level in response to influenza vaccination without improving antibody 
production. The Vit-D supplementation seems to direct the lymphocyte polarization toward a tolerogenic 
immune response as suggested by the lower Th1/Th2 ratio compared to controls (Goncalves-Mendes et 
al 2019). A tolerogenic immune response would be helpful in those instances of influenza-induced 
inflammatory damage. 
 
The latest advice regarding COVID-19 is 10,000 IU/d of vitamin D3 per day for a few weeks to rapidly raise 
25(OH)D concentrations, followed by 5000 IU/d. The goal should be to raise 25(OH)D concentrations 
above 40-60 ng/mL (100-150 nmol/L). For treatment of people who become infected with COVID-19, 
higher vitamin D3 doses might be useful. Randomized controlled trials and large population studies should 
be conducted to evaluate these recommendations (Grant et al 2020). 

Figure A1.4: Hazard ratio for death from cancer versus serum standardized Vitamin D concentration. 

  

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

<30 30-40 40-50 50-75 75-100 >100

H
az

ar
d 

Ra
tio

Standardized Vitamin D concentration (nmol/litre)



 

47 

Rezaei et al (2018) concluded that their literature review suggested that treatment of influenza-infected 
individuals with Vitamin D supplements or cathelicidin-derived agents may provide appreciable protection 
against natural influenza infection. Moreover, Vitamin D given at appropriate doses may facilitate 
protection against seasonal flu. 
  
Prudence suggests that all elderly persons, and especially those in nursing homes, should be given vitamin 
D supplements of an appropriately high dosage. 
 
As an example of the unexpected potential benefits of high serum vitamin D levels the data of Gaksch et 
al (2017) relating to cancer mortality has been reanalysed in Figure A1.4. The four lines represent the 
models used to adjust for risk factors. As can be seen the risk of death initially rises and then approaches 
a minimum above 100 nmol/litre. This concentration is consistent for the advice regarding COVID-19 
above. Note the high consistency between models above 50 nmol/litre. It remains unknown if this reduced 
risk for higher serum vitamin D is specific to certain cancers. Indeed, at which serum level is the minimum 
reached? 
 
A recent study regarding the effect of Vitamin D supplementation fir three months in Vit-D deficient 
elderly persons yielded some interesting results. After influenza vaccination there was no benefit 
regarding antibody titres, however, lower plasma levels of TNFα and IL-6, and higher ones for TFGβ were 
observed three months after vaccination and the Th1/Th2 ratio was lower in the D group after 3 months 
of Vit-D supplementation. Supplementation seemed to direct the lymphocyte polarization toward a 
tolerogenic immune response. The authors concluded that “a deeper characterization of metabolic and 
molecular pathways of these observations will aid in the understanding of Vit-D's effects on cell-mediated 
immunity in aging” (Goncalves-Mendes et al 2019). Given the observed higher sensitivity of females to 
EWM a tolerogenic immune response may be beneficial to females. Further studies are required regarding 
gender-specific effects. 
 
Conclusions 
 
Influenza vaccination remains the single most effective defence against a serious pathogen. Influenza 
vaccination reduces GP visits for ILI, reduces sickness absence among health care workers and reduces 
hospitalization for influenza. However, the effect on mortality is less clear with some estimates being far 
too good to be true.  
 
Our understanding of immune function is increasing and far more effective vaccines for the elderly will be 
developed. Despite a small percentage of adverse reactions (mostly minor) and occasional rapid 
mutations of the virus leading to negative vaccine effectiveness, vaccination against influenza is still 
recommended. Hopefully, vaccines for other winter pathogens will be developed soon. A vaccine against 
RSV remains a WHO priority area (WHO 2020b). 
 
All-age influenza-like-illness (ILI) has little correlation with mortality which mainly occurs in the elderly. 
While the all-age ILI rate is a good measure for pressures on primary care, a separate ILI rate should be 
reported for those aged 65-84 and 85+ to allow the potential mortality consequences of each seasons 
infections to be inferred.  
 
However, it is almost certain that current methods estimating deaths from influenza give an over-estimate 
due to lack of adjustment for RSV mortality in the elderly. This may affect the cost-effectiveness of 
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influenza vaccination in the elderly. The absence of a trend down in EWM since the early 1990’s is 
problematic to the case for influenza vaccination as a means of protection against death in the elderly. 
 
The apparent discrepancy between influenza vaccination and mortality reduction and overall trends in 
mortality and EWM may arise because in those who are in the last year of life influenza vaccination does 
confer benefit, however, this benefit is immediately lost when the person succumbs to another pathogen 
against which there is no current vaccine. 
 
Given the major conclusion of this study that winter is a multi-pathogen event the observation that joint 
pneumococcal and influenza vaccination gives greater protection than influenza vaccination alone seems 
to indicate that vaccination against both is a priority. 
 
Even if the WHO target of 75% vaccination in the over 65’s is reached influenza and it’s interactions with 
the winter pathogen pool will remain a source of highly variable cost and capacity pressures each winter. 
The costs associated with persons in the last year of life are unlikely to be significantly diminished by 
influenza vaccination, however, studies need to be initiated to determine if this is the case. 
 
My own ongoing research in this area (in preparation) seems to indicate that rates of EWM do not seem 
to show any difference between countries with minimal influenza vaccination and those with the highest 
rates. Those with the highest influenza vaccination rates may even show slightly higher EWM. This could 
be interpreted to confirm the observation in Table 1 that winter is a highly multi-pathogen event and that 
the observed EWM is the outcome of complex interactions between pathogens including outbreaks of the 
new type or kind of disease. 
 
Appendix 2: What happened in winter 2014/15? 
 
A2.1 Background 
 
This section will attempt to re-interpret an unexpected increase in total deaths in the Northern 
hemisphere in 2015 compared to 2014. The issues are multifactorial, and interpretation relies heavily on 
spatiotemporal granularity with multiple pathogens, hence, comparing two calendar years (2014 versus 
2015) is subject to the calendar year fallacy (Jones 2019). The combined forces of the Office for National 
Statistics and Public Health England (ONS 2016) failed to adequately explain the cause(s) because they 
relied too heavily on calendar year comparison.  
 
The year 2015 was also the year when many Western countries saw a trend to increased mortality rates 
and declining life expectancy (Public Health England 2018, London School of Economics 2019, Longevity 
Science Panel 2020). Hence understanding the multifactorial issues is far more important than just 2015. 
 
The 2014/15 vaccine was identical to that used in 2013/14 when VE had been high. During 2014 the 
predominant strains of influenza underwent multiple mutations such that when the Southern hemisphere 
had been vaccinated for the winter of 2014 (middle of the year) the vaccine was already showing signs of 
being somewhat ineffective. VE for influenza A(H3N2) which was the predominant strain in Australia 
during the 2014 winter had dropped to 26% (Sullivan 2016). Between winter in the Southern hemisphere 
and the Northern hemisphere further antigenic drift occurred and the mix of strains infecting each 
country/region became more diverse. 
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By the time the Northern hemisphere were vaccinated for the 2014/15 season, low and even negative VE 
had emerged which in Beijing China had dropped to 27% for A(H3N2) and -32% for influenza B. Across all 
strain’s vaccine effectiveness fell rapidly with age from +56% (age 6-17), to -13% (age 18-59) and -67% for 
age 60+ (Qin et al 2016). In Canada, VE for A(H3N2) was -16% overall (with -13% for clade-3C.2a and +52% 
for clade-3C.3b). VE for influenza B was 42%. However, for those vaccinated only in 2014/15 VE was 53%, 
but fell to -32% for those also vaccinated in 2013/14 and -54% for those vaccinated each year since 
2012/13 (Skowronski et al 2016). In the UK, VE for Influenza A and A(H3N2) was around 30% (across all 
ages), while for influenza B VE was around 45% up to age 64 but was a massive -200% for age 65+ (Peabody 
et al 2015). The percentage uptake of vaccination varied considerably between regions, i.e., only 32% for 
children in Cumbria, 23% for health care workers in Northern Ireland, etc (PHE 2015). 
 
However, levels of ILI were not unusually high and barely go above 50 per 100,000. Influenza hospital 
admissions peaked in week 2 of 2015 and were mainly A(H3N2). Compared to previous years ICU 
admissions were not high. GP and ED attendances for respiratory illness peak in week 52 of 2014 and 
week 1 of 2015. Acute respiratory outbreaks (mainly influenzas Type A) peak in week 2 of 2015 and are 
predominantly in care homes. RSV rates peaked in weeks 49 and 50 of 2014 and rates of acute bronchitis 
for those aged 75+ peaked at 7.2 per 1,000 in week 2 of 2015 and remain high through to week 16 when 
monitoring stopped. Influenza B levels only start to rise after week 4 of 2015 (important due to the 
massive negative VE for this strain). Parainfluenza rates increase above normal after week 4 in 2015 
and were still rising at week 15 when monitoring stopped (Public Health England 2015). 
 
In England, a peak in all-cause mortality occurred mainly in January 2015 followed by a period of higher 
mortality such that deaths in 2015 had shown the highest jump over the previous year since 1968 (ONS 
2016). Deaths went above the upper control limit from week 50 in 2014, peaked in week 2 and went back 
to upper limit at week 7 in 2015.Excess death did not go back to baseline till week 14 of 2015. Some 86% 
of the extra deaths occurred in the over 75’s and those with Dementia were particularly affected. 
Dementia(s) are a key indicator of frailty and inability to communicate symptoms and this explains why 
dementia is recorded as the primary cause of death (Howse 2016). Those with dementia die with 
dementia but die from either respiratory infections (56%) or circulatory system failures – 33% 
(Brunnström and Englund 2009).  
 
A2.2. An outbreak of the new kind or type of disease complicates analysis 
 
An outbreak of the new disease had been spreading across the UK during 2014. As can be seen in Figure 
A2.1 from the shift-up initiates bars most of the outbreak occurred between May-14 and Sep-14 with one-
third of areas initiating shift-up in June 2014. Some 90% of government areas were therefore in “shift-up” 
at the time of the January 2015 spike in deaths. Overlaid on Figure A2.1 is a second estimate derived from 
the rolling difference between successive 12-month periods, the from maximum difference bars. For 
example, a May-14 date implies that the rolling difference reaches a maximum for the difference between 
the 12-month total ending April-14 versus the 12-month total ending April-15 – this latter period 
commences at May-14. 
 
The point of initiation for Wales and England is June-14, with Scotland and Northern Ireland in August-14. 
Local Authority and Regional areas cluster around these dates due to spatiotemporal spread of the agent 
across the UK. For example, in London around Dec-13 for Haringey, Aug-14 for Hackney and Dec-14 for 
Hammersmith & Fulham, etc. The difference between the two viewpoints in Figure A2.1 is that shift-up is 
due to a single cause whereas the maximum difference encompasses the combined effects of multiple 
pathogens during the winter months. 
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Figure A2.1: Spread of an outbreak of the new disease across UK government areas during 2014 (the 
shift-up initiates bars) and point at which the rolling difference between successive 12-month periods 
indicates a potential retrospective start date (the from maximum difference bars) 
 

 
Figure A2.2: Deaths in January 2015 versus the 20-year average for UK local government areas 

 
 

0%

5%

10%

15%

20%

25%

30%

35%

40%
De

c-
13

Ja
n-

14

Fe
b-

14

M
ar

-1
4

Ap
r-

14

M
ay

-1
4

Ju
n-

14

Ju
l-1

4

Au
g-

14

Se
p-

14

O
ct

-1
4

N
ov

-1
4

De
c-

14

Ja
n-

15

Fe
b-

15

Pr
op

or
tio

n 
of

 g
ov

er
nm

en
t a

re
as Shift-up initiates

From maximum difference

-50%

-30%

-10%

10%

30%

50%

70%

10 100 1,000 10,000 100,000 1,000,000

De
at

hs
 in

 Ja
nu

ar
y 

20
15

 v
er

su
s 2

0 
ye

ar
 Ja

nu
ar

y 
av

er
ag

e

Size (as minimum deaths in 2014)



 

51 

Figure A2.3: Relationship between maximum rolling difference between 12-month total deaths in 2015 
versus 2014 and the 2014/15 EWM for UK local government areas 

 

As can be seen in Figure A2.2, deaths across the UK peaked in January 2015 at approximately 13% higher 
than a 20-year average for January. However, at Regional level this varies from 5 to 20% and within London 
from -4% in inner London to 9% in Outer London. At 120,000 deaths per annum 1 standard deviation of 
Poisson variation is ± 1%, at 12,000 ± 3% while at 1,200 it is ± 10%, and chance variation fails to explain 
the far wider spread. This is consistent with the spatiotemporal granularity in infectious outbreaks. 
 
As intimated in the ONS study (2016) deaths were elevated for several months after Jan-05 and this period 
of elevated deaths falls within the period used to calculate maximum EWM (maximum of the four-month 
rolling period ending December through to April). The relationship between the maximum rolling 12-
month difference between 2015 and 2014 and the EWM is given in Figure A2.3. 
 
As expected, data from the smallest local government areas lie furthest from the trend line where the 
data is densely populated. For those few local authorities with a small difference between the two years 
the EWM appears to reach a minimum of 19%. This is not far from the minimum EWM of 10% for England 
and Wales in the winter of 2013/14 (Figure A1.1 above). 
 
Figure A2.4 shows the effect of time on the maximum increase in the rolling year-on-year difference in 
deaths and the resulting median value of EWM in UK local authorities. Note an October 2015 date for 
maximum EWM implies that initiation occurred in November 2014, etc. This is confirmed in Appendix 3. 
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Figure A2.4: Effect of the date at which the rolling year-on-year difference in deaths reaches its 
maximum value and the resulting median value of EWM in UK local authorities. 
 

 
 
Hence the winter of 2014/15 was a complex mix of spread of the agent causing shift-up across the UK, 
vaccination with a poorly matched influenza vaccine (especially influenza B in the elderly) in late 2014 
followed by a moderate influenza outbreak in late 2014 which will have interacted with the vaccinated 
population, continued higher deaths after the spike in January 2015. The early peak in deaths corresponds 
to the peak in RSV infections (recall that deaths will peak about 4 -6 weeks later). Continued higher deaths 
were probably due to rising levels of both influenza B (negative vaccine effectiveness in the elderly) and 
parainfluenza as noted in the PHE influenza report (PHE 2015). PHE does not report levels of dual 
infections although it will have access to such data. Spatiotemporal granularity was imposed on top of 
these changes giving a confusing view using national level data. 
 
Deaths in 2015 do not drop back to normal levels in the rolling 52-week analysis and continue high through 
to 2018 when a large shift-down eventually emerges. See Appendix 3. 
 
This confusing jumble of events is consistent with spatiotemporal granularity in the spread of multiple 
pathogens and ensuing interactions between pathogens and vaccination (positive and negative). 
 
A2.3 Evidence for massive spatiotemporal granularity at small area level 
 
Massive spatiotemporal granularity of the 2015 event in England and Wales has already been 
demonstrated at small area level (Jones 2017b). This analysis has been repeated at Lower Super Output 
Area Level (LSOA). A LSOA contains around 1,500 persons or approximately 650 households (OCSI 2021). 
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The analysis shows the difference in deaths between mid-2015 (July 2014 to June 2015) and mid-2014 
(July 2013 to June 2014). Use of mid-year totals avoids the calendar year fallacy since all the excess deaths 
in the winter of 2014/14 occurred between December 2014 and June 2015. 
 
Figure A2.5 Spatiotemporal small-area granularity of the 2015 increase in deaths in England and Wales 
 

 
The analysis gives the difference in deaths in each LSOA from 2014 to 2015 expressed as a standard 
deviation equivalent difference between the two. Hence deaths in 2015 minus deaths in 2014 divided by 
the square root of the average number of deaths in that LSOA. 
 
Analysis shows that there is a slight increase in the difference between the two years due to population 
density, with lowest population density LSOA showing a 12% increase rising to a 16.3% increase above 
4,000 persons per square Km. The least deprived LSOA had a 12% increase while the most deprived 
showed a 17% increase. Taking the most deprived 7% of LSOA and segregating by population density 
showed a 5% increase between the two years for less than 1,200 persons per square Km compared to an 
11% increase for LSOA with >7,000 persons per square Km and 12%for more than 12,000 per square Km. 
 
This is typical infectious spread which is highest in deprived areas with high population density, although 
population density may be more important than deprivation per se. 
 
The distribution of differences is shown in Figure A2.5 with a skewed distribution consistent with higher 
deaths. However only 59% of LSOA showed higher deaths in 2015 and there are only 18% more LSOA at 
the right-hand side of the frequency distribution. Likewise, the two tails of the distribution show extreme 
deviation with a minority of LSOA showing a difference more than ± 4.5 standard deviation equivalent 
between the years. 
 

0%

2%

4%

6%

8%

10%

12%

14%

< 
-4

.5

-4
 to

 -4
.5

-3
.5

 to
 -4

-3
 to

 -3
.5

-2
.5

 to
 -3

-2
 to

 -2
.5

-1
.5

 to
 -2

-1
 to

 -1
.5

-0
.5

 to
 -1

0 
to

 -0
.5

0 
to

 0
.5

0.
5 

to
 1

1 
to

 1
.5

1.
5 

to
 2

2 
to

 2
.5

2.
5 

to
 3

3 
to

 3
.5

3.
5 

to
 4

4 
to

 4
.5

> 
4.

5

Pr
op

or
tio

n 
of

 L
SO

A

Difference in total deaths mid-2015 and mid-2014 as STDEV



 

54 

How is the negative tail to be explained? The simple explanation is two-fold, namely: 
 

1. Influenza and other winter pathogens show high spatiotemporal granularity and hence 
will be completely absent in some LSOA but concentrated in others. This was 
demonstrated for COVID-19 in Part 1 of this series. 

2. On top pf the differences in #1 is the spatiotemporal differences in the outbreaks of the 
new type or kind of infectious disease resulting in a mix of LSOA which are in shift-down 
in 2015 and others are in shift-up. This was illustrated in Figure A2.1. Hence those LSOA 
without any outbreaks of winter pathogens but which went into shift-down can show 
significantly lower mortality in 2015. 

 
Clearly all this is subject to Poisson variation, hence, the use of the frequency distribution in Figure A2.5. 
Based on pure Poisson randomness alone some 99.8% of outcomes should lie below + 3 standard 
deviation (only 97.7% in the distribution) and 97.7% below + 2 standard deviation (only 87.4% in the 
distribution). More importantly only 0.1% should be below - 3 standard deviation equivalent yet some 
1.1% do so. Hence even in the presence of winter infections increasing deaths another force is at work 
acting to cause a large decrease in deaths in some locations. 
 
I have encountered the same problem when attempting to interpret COVID-19 mortality in UK local 
government areas during 2020 and 2021. Both shift-up and shift-down are operating throughout the 
duration of the epidemic. 
 
Hence, local authorities which show a shift-up in late 2018 to early 2019 have the potential to revert to 
shift-down in late 2019 to early 2020 and shift down then diminishes the COVID-19 deaths and resulting 
all-cause mortality is lower. See http://www.hcaf.biz/2020/Covid_Excess_Deaths.pdf 
 
See next section for more detail regarding spatiotemporal granularity in outbreaks of the new type or kind 
of disease. 
 
Appendix 3: Is the shift-up instantaneous and how outbreaks of the new type or kind of disease change 
the shape of the rolling EWM calculation 
 
Firstly, we need to address the issue of whether shift-up is instantaneous as seemingly implied by my early 
observations during the 1993 outbreak. Two perspectives of the same outbreak are possible (see dual 
viewpoint studies of the 2012 outbreak in Berkshire as given in the list of further reading just before the 
reference section): 
 

1. From the viewpoint of a hospital receiving medical patients affected by the new disease 
condition. 

2. A population-based view where patients or deaths occur in a defined area whose 
boundaries may be somewhat arbitrary. 

 
From the first perspective the outbreak will be moving through the hospital catchment area which is 
defined by usual patient flow determined by travel time, etc. It is assumed that the infection will 
disproportionately affect nursing home residents as demonstrated in the Berkshire study on the 2012 
outbreak. Hence the hospital receives an initial rush of patients from throughout the catchment area. 
 

http://www.hcaf.biz/2020/Covid_Excess_Deaths.pdf
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Figure A3.1: Spread of a shift-down in 2018 followed by a shift-up in 2019 using a rolling 12-month total 
of deaths for the entire UK 

 

From the defined area perspective, the exact spatiotemporal characteristics will depend on the 
complexity of the population structure. Hence, using deaths in UK local government areas as an example 
the shape of the rolling 12-month total for deaths will often show evidence for an initial build up period 
when the agent is spreading through the various social networks within that defined area. At a gross level 
spread across the whole UK generates a pattern of shift-down and shift-up which is blunted. This is shown 
in Figure A3.1. 
 
Detailed analysis shows that shift-down commences in a few local authority areas in late 2017, while shift-
up likewise commences in a few local authorities in late 2018. An organisations perception of the outbreak 
therefore depends entirely upon the spatial area which it services. This behaviour is replicated at local 
authority level and it depends on the size of the local authority and the disposition of towns and cities 
within that area defined by its boundary. If you change the boundary a slightly different view emerges. 
This is called the modifiable areal unit problem (MAUP) (see Science Direct 2020). The MAUP effect 
explains why weighted population density was used in Parts 1 and 2 of this series. 
 
Figure 3.1 also encompasses one of the limitations of the rolling 12-month total methodology. The shift-
down on the left-hand side of Figure A3.1 is contaminated with the effect of an earlier influenza outbreak 
in the winter of 2016/17. The resulting spike in deaths enters the rolling 12-month total and drops out 
some 12-months later. However, like all influenza outbreaks not every health authority was equally 
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affected and Figure A3.2 shows a longer trend for the West Berkshire local authority in the South of 
England, located along the M4 corridor from London to Wales. 
 
Figure A3.2: Rolling 12-month trend in total deaths in West Berkshire, England from Dec-01 to Sep-20 

 

Working through the chart, Aug-02 shift-up occurs followed by influenza in late Feb-03. Shift-down is 
concealed by the influenza tabletop feature but finishes at Jan-05. Another shift-up immediately 
commences in Feb-05, immediately followed by influenza in Mar-05, etc. Sep-12 sees the start of a large 
shift-up with little influenza, shift-down follows and concludes at Sep-14, another shift-up commences 
Oct-14 followed by influenza in late December and Jan-15. This gives the typical shoulder in both shift-up 
and shift-down. Feb-16 sees an influenza event which obscures another shift-up starting in Apr-17. A shift-
down concludes in April-19 followed by a large shift-up in May-19. The COVID-19 epidemic is then 
imposed-on top of shift-up from April-20 onward. While West Berkshire seems to have no gap between 
shift-down and shift-up this is not universally true and in some local authorities a gap of up to six months 
occurs. West Berkshire has a simple population structure and has a single urban area covering Newbury 
and nearby Thatcham. The rest of the local authority is agriculture. In this simple population structure 
shift up seems to have occurred within a one-month period. Hence there is a short warm-up period. 
Weekly data would be needed to demonstrate the finer detail. 
 
Having established that shift-up is not in fact instantaneous – as would be expected from a genuine 
infectious outbreak – we can now turn to the issue of how shift-up modifies the EWM calculation. 
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Figure A3.3: Change in the value of the calculated maximum EWM using an artificial 5% shift-up in daily 
deaths from original 1990/91 data in England and Wales. 

 
 
To achieve this, a 5% shift-up in deaths was introduced into daily deaths data in England and Wales for 
the winter of 1990/91. As can be seen in Figure A3.3 a hypothetical 5% shift-up in deaths early in 1990 at 
first led to a reduction in calculated EWM for the winter of 1990/91. EWM then increases up to a 
maximum for a shift commencing on the 1st of November 1990. 
 
Using the original data, the EWM calculation reached a maximum on the 8th of March 1991. The point of 
Maximum EWM went back in time to around the 3rd of March for a shift introduced earlier in the year, 
after this it then moved later in the winter reaching a maximum on the 19th of March for a shift-up 
introduced on the 1st of January. These changes confirm the observations regarding the rolling EWM 
calculation in Figure 6 in the main text. 
 
Clearly the exact effect of the shift-up will depend on how the agent causing shift-up interacts with other 
pathogens. From Figure 9 in the main text, we can deduce that more complex effects will be obtained if 
the magnitude of shift-up varies with time of year. The November date in Figure A3.3 also agrees with a 
November date for initiation of a shift-up (plus other winter effects) on the value of the maximum EWM 
shown in Figure A2.4 above.  
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